微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

4.1 Sampling at specified depth(s) within a liquid may be needed to confirm or rule out variations within a target population. This practice describes the design and operation of commercially available grab and discrete depth samplers for persons responsible for designing or implementing sampling programs, or both.4.2 These sampling devices are used for sampling liquids in tanks, ponds, impoundments, and other open bodies of water. Some may be used from the edge or bank of the sampling site, whereas some can only be used from a platform, boat, or bridge over the sampling site. Some of the devices described are suitable for sampling slurries and sludges as well as aqueous and other liquids with few or no suspended solids.4.3 Practice D5743 provides guidance for sampling drums, tanks, or similar containers.4.4 This practice does not address general guidelines for planning waste sampling activities (Guide D4687), development of data quality objectives (Practice D5792), the design of monitoring systems and determination of the number of samples to collect (Practice D6311), in situ measurement of parameters of interest, data assessment and statistical interpretation of resultant data (Guide D6233), sample preservation, sampling and field quality assurance (Guide D5612), or the selection of sampling locations or obtaining a representative sample (Guide D6044).1.1 This practice describes sampling devices and procedures for collecting samples of liquids or sludges, or both, whose upper surface can be accessed by the suitable device. These devices may be used to sample tanks that have an appropriately sized and located sampling port.1.2 This practice describes and discusses the advantages and limitations of the following commonly used equipment, some of which can be used for both grab and discrete depth sampling: dipper, liquid grab sampler, swing jar sampler, Bacon Bomb, Kemmerer sampler, Discrete Level sampler, liquid profiler, peristaltic pump, and the Syringe sampler.1.3 This practice provides instructions on the use of these samplers.1.4 This practice does not address sampling devices for collecting ground water.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Gas or vapor sampling is often accomplished by actively pumping air through a collection medium such as activated charcoal. Problems associated with a pump – inconvenience, inaccuracy, and expense – are inextricable from this type of sampling. The alternative covered by this practice is to use diffusion for moving the compound of interest onto the collection medium. This approach to sampling is attractive because of the convenience of use and low total monitoring cost.5.2 However, previous studies have found significant problems with the accuracy of some samplers. Therefore, although diffusive samplers may provide a plethora of data, inaccuracies and misuse of diffusive samplers may yet affect research studies. Furthermore, worker protections may be based on faulty assumptions. The aim of this practice is to counter the uncertainties in diffusive sampling through achieving a broadly accepted set of performance tests and acceptance criteria for proving the efficacy of any given diffusive sampler intended for use.1.1 This practice covers the evaluation of the performance of diffusive samplers of gases and vapors for use over sampling periods from 4 to 12 h and for wind speeds less than 0.5 m/s. Such sampling periods and wind speeds are the most common in the indoor workplace setting. This practice does not apply to static or area sampling in wind speeds less than 0.1 m/s, when diffusion outside the sampler may dominate needed convection from the ambient air to the vicinity of the sampler. Given a suitable exposure chamber, the practice can be extended to cover sampler use for other sampling periods and conditions. The aim is to provide a concise set of experiments for classifying samplers primarily in accordance with a single sampler accuracy figure. Accuracy is defined (3.2.2) in this standard so as to take into account both imprecision and uncorrected bias. Accuracy estimates refer to conditions of sampler use which are normally expected in a workplace setting. These conditions may be characterized by the temperature, atmospheric pressure, humidity, and ambient wind speed, none of which may be constant or accurately known when the sampler is used in the field. Furthermore, the accuracy accounts for the effects of diffusive loss of analyte on the estimation of time-weighted averages of concentrations which may not be constant in time. Aside from accuracy, the samplers are tested for compliance with the manufacturer’s stated limits on capacity, possibly in the presence of interfering compounds.1.2 This practice is an extension of previous research on diffusive samplers (1-14)2 as well as Practices D4597, D4598, D4599, and MDHS 27. An essential advance here is the estimation of sampler accuracy under actual conditions of use. Furthermore, the costs of sampler evaluation are reduced.1.3 Knowledge gained from similar analytes expedites sampler evaluation. For example, interpolation of data characterizing the sampling of analytes at separated points of a homologous series of compounds is recommended. At present the procedure of (9) is suggested. Following evaluation of a sampler in use at a single homologous series member according to the present practice, higher molecular weight members would receive partial validations considering sampling rate, capacity, analytical recovery, and interferences. The test for diffusive analyte loss can be omitted if the effect is found negligible for a given sampler or analyte series.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The advantages of the depth-integrating samplers are as follows:4.1.1 The samplers provide the only means by which a representative sample of phytoplankton can be obtained from a stream.4.1.2 The variety of sampler designs result in the availability of a sampler that can be used in virtually all velocities of flow.4.1.3 Samples of known volumes can be obtained.4.1.4 A quantitative sample is obtained. Nanno- and ultraplankton are not lost from the sampling device.4.1.5 Some of the samplers can be used in water up to 55 m deep.4.1.6 Many of the samplers are light-weight and can be used without auxiliary equipment.4.2 The disadvantages of the depth-integrating samplers are as follows:4.2.1 The samplers can be used only in flowing streams having a velocity greater than 1.5 ft3/s.4.2.2 Some of the samplers are heavy and require the use of auxiliary equipment, such as a crane with hoist.4.2.3 The collection of samples can be very time-consuming.4.3 There are several special considerations that shall be observed when using depth-integrating samplers. They are as follows:4.3.1 The nozzle of the sampler should be inspected periodically for chips, cracks, or other signs of damage and replaced as necessary.4.3.2 The sample from each vertical profile must be combined with other similar samples in a common container. If the combined sample is subsequently subdivided, it must be thoroughly mixed before doing so.1.1 This practice covers the procedures for obtaining quantitative samples of a phytoplankton community by use of depth-integrating sampler. The method is suitable for use in flowing waters.1.2 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 This guide provides persons responsible for designing and implementing wastewater sampling programs with a summary of the types of automatic wastewater samplers, discusses the advantages and disadvantages of the different types of samplers, and addresses recommended procedures for their use. The field settings are primarily, but not limited to, open channel flows in enclosed (e.g., sewer) systems or open (e.g., streams or open ditches, and sampling pressure lines) systems.1.1 This guide covers the selection and use of automatic wastewater samplers, including procedures for their use in obtaining representative samples. Automatic wastewater samplers are intended for the unattended collection of samples that are representative of the parameters of interest in the wastewater body. While this guide primarily addresses the sampling of wastewater, the same automatic samplers may be used to sample process streams and natural water bodies.1.2 The guide does not address general guidelines for planning waste sampling activities (see Guide D4687), development of data quality objectives (see Practice D5792), the design of monitoring systems and determination of the number of samples to collect (see Guide D6311), operational details of any specific type of sampler, in-situ measurement of parameters of interest, data assessment and statistical interpretation of resultant data (see Guide D6233), or sampling and field quality assurance (see Guide D5612). It also does not address sampling groundwater.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3.1 Exception—The inch-pound units given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This guide is for the use of disposable handheld soil core samplers in collecting and storing approximately 5 or 25 g soil samples for volatile organic analysis in a manner that reduces loss of contaminants due to volatilization or biodegradation. In general, an initial soil core sample is collected (see Guides D6169/D6169M and D6282/D6282M) and the disposable handheld soil core sampler is then used to collect the 5 or 25 g soil sample from the initial soil core sample. The disposable handheld soil core sampler can also serve as a sample storage chamber.5.2 The physical integrity of the soil sample is maintained during sample collection, storage, and transfer in the laboratory for analysis or preservation.5.3 During sample collection, storage, and transfer, there is very limited exposure of the sample to the atmosphere.5.4 Laboratory subsampling is not required for samples collected following this guide. The sample is expelled directly from the coring body/storage chamber into the appropriate container for analysis, or preservation, at the analytical laboratory without disrupting the integrity of the sample. Subsampling from the disposable handheld soil core sampler should not be performed to obtain smaller sample sizes for analysis.5.5 This guide specifies sample storage in the disposable handheld soil core sampler at 4 ± 2°C for up to 48 h.5.6 This guide does not use methanol preservation or other chemical preservatives in the field. As a result, there are no problems associated with flammability hazards, shipping restrictions, or dilution of samples containing low volatile concentrations due to solvents being added to samples in the field.5.7 The disposable handheld soil core samplers are single-use devices. They should not be cleaned or reused.5.8 This disposable handheld soil core samplers cannot be used for collecting cemented material, consolidated material, or material having fragments wider than the mouth of the device or coarse enough to interfere with proper coring techniques.NOTE 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective sampling. Users of this practice are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.Practice D3740 was developed for agencies engaged in the laboratory testing and/or inspection of soil and rock. As such, it is not totally applicable to agencies performing this practice. However, user of this practice should recognize that the framework of practice D3740 is appropriate for evaluating the quality of an agency performing this practice. Currently there is no known qualifying national authority that inspects agencies that perform this practice.1.1 This guide is intended for application to soils that may contain volatile organic compounds.1.2 This guide provides a general procedure and considerations associated with using a disposable handheld soil core sampler to collect and temporarily store a soil sample for volatile organic analysis.1.3 In general, an initial soil sample is collected (see Guides D6169/D6169M and D6282/D6282M) and the disposable handheld soil core sampler is then used to collect the 5 or 25 g soil sample from the initial soil core sample. The disposable handheld soil core sampler can also serve as a sample storage chamber. It is recommended that this standard be used in conjunction with Guides D4547, D4687, D6169/D6169M, D6232, D6282/D6282M, D6418, and D6640, as appropriate, which provide information on the collection of the initial soil core sample.1.4 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026. Reporting of test results in units other than SI shall not be regarded as nonconformance with this standard.1.5 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project’s many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This practice is significant for determining performance relative to ideal sampling conventions. The purposes are multifold:5.1.1 The conventions have a recognized tie to health effects and can easily be adjusted to accommodate new findings.5.1.2 Performance criteria permit instrument designers to seek practical sampler improvements.5.1.3 Performance criteria promote continued experimental testing of the samplers in use with the result that the significant variables (such as wind speed, particle charge, etc.) affecting sampler operation become understood.5.2 One specific use of the performance tests is in determining the efficacy of a given candidate sampler for application in regulatory sampling. The accuracy of the candidate sampler is measured in accordance with the evaluation tests given here. A sampler may then be adopted for a specific application if the accuracy is better than a specific value.NOTE 1: In some instances, a sampler so selected for use in compliance determinations is specified within an exposure standard. This is done so as to eliminate differences among similar samplers. Sampler specification then replaces the respirable sampling convention, eliminating bias (3.2.6), which then does not appear in the uncertainty budget.5.3 Although the criteria are presented in terms of accepted sampling conventions geared mainly to compliance sampling, other applications exist as well. For example, suppose that a specific aerosol diameter-dependent health effect is under investigation. Then for the purpose of an epidemiological study an aerosol sampler that reflects the diameter dependence of interest is required. Sampler accuracy may then be determined relative to a modified sampling convention.1.1 This practice covers the evaluation of the performance of personal samplers of non-fibrous respirable aerosol. The samplers are assessed relative to a specific respirable sampling convention. The convention is one of several that identify specific particle size fractions for assessing health effects of airborne particles. When a health effects assessment has been based on a specific convention it is appropriate to use that same convention for setting permissible exposure limits in the workplace and ambient environment and for monitoring compliance. The conventions, which define inhalable, thoracic, and respirable aerosol sampler ideals, have now been adopted by the International Standards Organization (ISO 7708), the Comité Européen de Normalisation (CEN Standard EN 481), and the American Conference of Governmental Industrial Hygienists (ACGIH, Ref (1)),2 developed (2) in part from health-effects studies reviewed in Ref (3) and in part as a compromise between definitions proposed in Refs (3, 4).1.2 This practice is complementary to Test Method D4532, which specifies a particular instrument, the 10-mm cyclone.3 The sampler evaluation procedures presented in this practice have been applied in the testing of the 10-mm cyclone as well as the Higgins-Dewell cyclone.3 ,4 Details on the evaluation have been published (5-7) and can be incorporated into revisions of Test Method D4532.1.3 A central aim of this practice is to provide information required for characterizing the uncertainty of concentration estimates from samples taken by candidate samplers. For this purpose, sampling accuracy data from the performance tests given here can be combined with information as to analytical and sampling pump uncertainty obtained externally. The practice applies principles of ISO GUM, expanded to cover situations common in occupational hygiene measurement, where the measurand varies markedly in both time and space. A general approach (8) for dealing with this situation relates to the theory of tolerance intervals and may be summarized as follows: Sampling/analytical methods undergo extensive evaluations and are subsequently applied without re-evaluation at each measurement, while taking precautions (for example, through a quality assurance program) that the method remains stable. Measurement uncertainty is then characterized by specifying the evaluation confidence (for example, 95 %) that confidence intervals determined by measurements bracket measurand values at better than a given rate (for example, 95 %). Moreover, the systematic difference between candidate and idealized aerosol samplers can be expressed as a relative bias, which has proven to be a useful concept and is included in the specification of accuracy (3.2.13, 3.2.13.1, 3.2.13.3).1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This guide is intended to provide the conventions adopted by the International Standards Organization (ISO 7708), the Comité Européen de Normalisation (CEN EN 481), and the American Conference of Governmental Industrial Hygienists (ACGIH) (1). The definition of respirable aerosol is the basis for recommended exposure levels (REL) of respirable coal mine dust as promulgated by NIOSH (Criteria for a Recommended Standard, Occupational Exposure to Respirable Coal Mine Dust (15)). The respirable aerosol definition also forms the basis of the NIOSH sampling method for respirable particulates not otherwise regulated (NIOSH Manual of Analytical Methods (16)).4.2 The convention can be used for those who are preparing to evaluate a workplace environment by collecting samples of aerosolized particles, or who wish to obtain an understanding of what information can be obtained by such sampling. The convention to be used is not always straightforward, but generally depends on what part of the respiratory system is affected by the aerosol particles. The conventions are often applied for approximating mass fractions, but they may also be used in the evaluation of total surface area or the number of particles in the collected material.4.3 The conventions constitute a part of the performance characteristics required of aerosol samplers for collecting aerosol according to the relevant health effects. This guide therefore does not specify particular samplers for measuring the aerosol fractions defined here. Detailed guidelines for evaluating any given sampler relative to the conventions are available (CEN EN 13205, six parts). Several advantages over instrument specification can be attributed to the adoption of these performance-associated conventions:4.3.1 The conventions have a recognized relationship to health effects.4.3.2 Performance criteria permit instrument designers to seek practical sampler improvements.4.3.3 Performance criteria promote continued experimental testing of the samplers in use with the result that the significant variables (such as wind speed, particle charge, and so forth) affecting sampler operation become understood.1.1 This guide defines conventions for personal samplers of specific particle-size-dependent fractions of any given non-fibrous airborne aerosol. Such samplers are used for assessing health effects and in the setting of and testing for compliance with permissible exposure limits in the workplace and ambient environment. The conventions have been adopted by the International Standards Organization (ISO 7708), the Comité Européen de Normalisation (CEN EN 481), and the American Conference of Governmental Industrial Hygienists (ACGIH) (1).2 The conventions were developed (2) in part from health-effects studies reviewed (3) by the ACGIH and in part as a compromise between definitions proposed by the ACGIH (3) and by the British Medical Research Council (BMRC) (4). Conventions are given here for inhalable, thoracic, and respirable fractions.1.2 This guide is complementary to Test Method D4532, which describes the performance of respirable dust cyclones and operational procedures for use. The procedures, specifically the optimal flow rate, are still valid although the estimated accuracy differs somewhat from use with previous aerosol fraction definitions. Details on these instruments have been published (5-11).1.3 Limitations: 1.3.1 The definitions given here were adopted by the agencies listed in 1.1 in part on the basis of expected health effects of the different size fractions, but in part allowing for available sampling equipment. The original adoption by CEN was, in fact, for the eventual setting of common standards by the EC countries while permitting the use of a variety of instrumentation. Deviations of the sampling conventions from health-related effects are as follows:1.3.1.1 The inhalable fraction actually depends on the specific air speed and direction, on the breathing rate, and on whether breathing is by nose or mouth. The values given in the inhalable convention are for representative values of breathing rate and represent averages over all wind directions.1.3.1.2 The respirable and thoracic fractions vary from individual to individual and with the breathing pattern. The conventions are approximations to the average case.1.3.1.3 Each convention applies strictly to a fraction penetrating to a region, rather than depositing. Therefore, samples collected according to the conventions may only approximate correlations with biological effects. For example, the respirable convention overestimates the fraction of very small particles deposited in the alveolar region of the respiratory system because some of the particles are actually exhaled without being deposited (12). In many workplaces, these very small particles contribute insignificantly to the sampled mass. Furthermore, the large variability between individuals and the details of clearance may be as important as this type of effect.1.3.1.4 The thoracic convention applies to mouth breathing, for which aerosol collection is greater than during nose breathing.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Diffusive samplers provide a useful sampling option for studying time-weighted average indoor air concentrations of vapor-phase pollutants. They are easy and cost-effective to deploy enabling the collection of relatively large data sets.5.2 The objective of this guide is to provide guidance for the placement and use of diffusive samplers that when uniformly applied enables the user to eliminate many potential interferences that may occur in diffusive sampling of indoor air. Since the analysis of the indoor environment by diffusive sampling is influenced by many factors other than the method of sampling, efforts are made to minimize interfering factors and maintain the air at conditions typical of the measurement location within the vicinity of the diffusive sampler. However, when performing certain diagnostic or special measurements, non-typical indoor air environmental conditions may be desirable or required. Thus, the objectives of a sampling study determine the conditions needed for sampling.5.3 Diffusive sampling provides for time integrated measurements. Diffusive samplers are usually placed in an indoor environment over a time period to obtain a time weighted average concentration; hence, interfering factors potentially occurring over this period should be anticipated and eliminated where possible. Diffusive samplers often lack the sensitivity to measure short-term peak concentrations.5.4 With suitable instruction regarding placement of diffusive samplers, placement, and retrieval of the samplers can be performed by unskilled personnel (for example, occupants).1.1 This guide covers the placement and use of diffusive samplers in an indoor environment.1.2 The primary use of diffusive samplers is to measure the exposure concentrations of specific gaseous air contaminants for occupants in a variety of indoor environments.1.3 Diffusive samplers within this guide are used to measure concentrations of air contaminants in residences, public buildings, offices, and other non-industrial environments. A diffusive sampler is any air sampler that does not utilize electrical or mechanical power in order to supply air to the sorbent media or chemical reactant within the sampler and that samples according to Fick’s first law of diffusion.1.4 The purpose of this guide is to ensure uniformity of sampling within a variety of indoor environments and to facilitate comparison of results.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This practice describes the maximum transit-rate ratios and depths that can be used for selected isokinetic suspended-sediment sampler/nozzle/container configurations in order to insure isokinetic sampling.5.2 This practice is designed to be used by field personnel collecting whole-water samples from open channel flow.1.1 This practice covers the maximum transit-rate ratios and depths for selected suspended-sediment sampler-nozzle-container configurations.1.2 This practice explains the reasons for limiting the transit-rate ratio and depths that suspended-sediment samplers can be correctly used.1.3 This practice give maximum transit-rate ratios and depths for selected isokinetic suspended-sediment sampler/nozzle/container size for samplers developed by the Federal Interagency Sedimentation Project.1.4 Throughout this practice, a samplers lowering rate is assumed to be equal to its raising rate.1.5 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method covers the determination of respirable dust concentration in workplace atmospheres.5.2 Variations of the test method are in world-wide use for determining compliance relative to occupational exposure levels.5.3 The test method may be used to verify dust control measures.5.4 The test method may also be applied in research into health effects of dust in an occupational setting.1.1 This test method provides details for the determination of respirable dust concentration defined in terms of international convention in a range from 0.5 mg/m3 to 10 mg/m3 in workplace atmospheres, depending on sampling time. Specifics are given for sampling and analysis using any one of a number of commercially available cyclone samplers.1.2 The limitations on the test method are a minimum weight of 0.1 mg of dust on the filter, and a maximum loading dependent on sampler type and time of sampling. The test method may be used at higher loadings if the flow rate can be maintained constant.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This test method contains notes that are explanatory and are not part of the mandatory requirements of the method.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
15 条记录,每页 10 条,当前第 1 / 2 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页