微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 260元 / 折扣价: 221

在线阅读 收 藏

定价: 260元 / 折扣价: 221

在线阅读 收 藏
AS 1212-1981/Amdt 1-1982 Scale rules 被代替 发布日期 :  1982-12-07 实施日期 : 

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏
BS EN 20105-A03:1994 Colour Scale Textiles. Tests for colour fastness 现行 发布日期 :  1961-12-15 实施日期 : 

定价: 2926元 / 折扣价: 2488 加购物车

在线阅读 收 藏

3.1 A number of laboratory procedures are used to evaluate the effectiveness of fire-retardant and fire-resistant treatments and coatings. In general, these methods measure the three stages of fire development: (1) ignition; (2) flame spread (rate of growth of the fire); and (3) conflagration extent. While all three are of extreme importance, flame spread has been recognized as the main factor associated with testing fire-retardant coatings.3.2 Flame spread ratings based upon Test Method E84 have acquired common acceptance by regulatory agencies, but such large-scale tests are seldom practical during the development or modification of a fire-retardant coating.3.3 This test method provides the relative flame spread of experimental coatings using small test specimens under the conditions established in the 2-foot tunnel. By experimentally calibrating the 2-foot tunnel with similar Test Method E84-rated fire-retardant paint, results obtained by this test method can be used to screen coatings for suitability for testing in the Test Method E84 tunnel.3.3.1 This test method is intended as an experimental tool in evaluating experimental coatings for further development. No direct correlation of results from this test method and the Test Method E84 tunnel have been made or are implied.3.3.2 The results obtained by this test method do not in themselves act as an accurate predictor of performance in Test Method E84 and shall not be used for the purpose of certification to any class of flame spread performance.1.1 This test method determines the protection a coating affords its substrate, and the comparative burning characteristics of coatings by evaluating the flame spread over the surface when ignited under controlled conditions in a small tunnel. This establishes a basis for comparing surface-burning characteristics of different coatings without specific consideration of all the end-use parameters that might affect surface-burning characteristics under actual fire conditions.1.2 In addition to the experimental flame spread rate, the weight of panel consumed, time of afterflaming and afterglow, char dimensions and index, and height of intumescence can be measured in this test. However, a relationship should not be presumed among these measurements.1.3 This standard is used to determine certain fire-test responses of materials, products, or assemblies to heat and flame under controlled conditions by using results obtained from fire-test response standards. The results obtained from using this standard do not by themselves constitute measures of fire hazard or fire risk.1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.5 This standard is used to measure and describe the response of materials, products, or assemblies to heat and flame under controlled conditions, but does not by itself incorporate all factors required for fire hazard or fire risk assessment of the materials, products, or assemblies under actual fire conditions.1.6  Fire testing is inherently hazardous. Adequate safeguards for personnel and property shall be employed in conducting these tests.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 The property of color of a solvent varies in importance with the application for which it is intended, the amount of color that can be tolerated being dependent on the color characteristics of the material in which it is used. The paint, varnish, and lacquer solvents, or diluents commercially available on today's market normally have little or no color. The presence or absence of color in such material is an indication of the degree of refinement to which the solvent has been subjected or of the cleanliness of the shipping or storage container in which it is handled, or both.(A) This is platinum-cobalt color No. 10 in Guide D365.3.2 For a number of years the term “water-white” was considered sufficient as a measurement of solvent color. Several expressions for defining “water-white” gradually appeared and it became evident that a more precise color standard was needed. This was accomplished in 1952 with the adoption of Test Method D1209 using the platinum-cobalt scale. This test method is similar to the description given in Standard Methods for the Examination of Water and Waste Water4 and is referred to by many as “APHA Color.” The preparation of these platinum-cobalt color standards was originally described by A. Hazen in the American Chemical Journal5 in which he assigned the number 5 (parts per ten thousand) to his platinum-cobalt stock solution. Subsequently, in their first edition (1905) of Standard Methods for the Examination of Water, the American Public Health Association, using exactly the same concentration of reagents, assigned the color designation 500 (parts per million) which is the same ratio. The parts per million nomenclature is not used since color is not referred directly to a weight relationship. It is therefore recommended that the incorrect term “Hazen Color” should not be used. Also, because it refers primarily to water, the term “APHA Color” is undesirable. The recommended nomenclature for referring to the color of organic liquids is “Platinum-Cobalt Color, Test Method D1209.”3.3 The petroleum industry uses the Saybolt colorimeter Test Method D156 for measuring and defining the color of hydrocarbon solvents; however, this system of color measurement is not commonly employed outside of the petroleum industry. It has been reported by various sources that a Saybolt color of +25 is equivalent to 25 in the platinum-cobalt system or to colors produced by masses of potassium dichromate ranging between 4.8 and 5.6 mg dissolved in 1 L of distilled water. Because of the differences in the spectral characteristics of the several color systems being compared and the subjective manner in which the measurements are made, exact equivalencies are difficult to obtain.1.1 This test method describes a procedure for the visual measurement of the color of essentially light colored liquids (Note 1). It is applicable only to materials in which the color-producing bodies present have light absorption characteristics nearly identical with those of the platinum-cobalt color standards used.NOTE 1: A procedure for estimating color of darker liquids, described for soluble nitrocellulose base solutions, is given in Guide D365.1.2 For purposes of determining conformance of an observed or a calculated value using this test method to relevant specifications, test result(s) shall be rounded off “to the nearest unit” in the last right-hand digit used in expressing the specification limit, in accordance with the rounding-off method of Practice E29.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 For specific hazard information, see the Material Safety Data Sheet.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements see Section 6.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The test protocol evaluates those complex suspended ceiling systems that cannot be assessed by simple engineering calculations contained in ASCE/SEI 7 and Practice E580/E580M. It is not intended to replace the requirements in ASCE/SEI 7. Suspended ceiling systems are considered nonstructural components of buildings.1.1 These test methods help evaluate the performance of a full-scale suspended ceiling system during a seismic event using a dynamic seismic simulator (shake table).1.2 These full-scale procedures are not the only available procedures for evaluating the seismic performance of ceiling systems. These tests do not preclude the use of other small-scale or full-scale component or system testing.1.3 These test methods contain two independent procedures.1.3.1 Comparative method where the level of performance of an experimental system is compared to that of a control test system under the same set of conditions.1.3.2 Non-comparative method where a single test is conducted to establish the level of performance of an experimental system.1.4 These test procedures are valid and useful for all types of suspended ceiling systems.1.5 The text of this standard uses notes and footnotes that provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.6 The values stated in either SI units or inch-pound units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The demand for SPF insulation in homes and commercial buildings has increased as emphasis on energy efficiency increases. In an effort to protect the health and safety of both trade workers and building occupants due to the application of SPF, it is essential that reentry/reoccupancy-times into the structure where SPF has been applied, be established.5.2 Concentrations of chemical emissions determined in large-scale ventilated enclosure studies conducted by this practice may be used to generate source emission terms for IAQ models.5.3 The emission factors determined using this practice may be used to evaluate comparability and scalability of emission factors determined in other environments.5.4 This practice was designed to determine emission factors for chemicals emitted by SPF insulation in a controlled room environment.5.5 New or existing formulations may be sprayed, and emissions may be evaluated by this practice. The user of this practice is responsible for ensuring analytical methods are appropriate for novel compounds present in new formulations (see Appendix X1 for target compounds and generic formulations).5.6 This practice may be useful for testing variations in emissions from non-ideal applications. Examples of non-ideal applications include those that are off-ratio, applied outside of recommended range of temperature and relative humidity, or applied outside of manufacturer recommendations for thickness.5.7 The determined emission factors are not directly applicable to all potential real-world applications of SPF. While this data can be used for VOCs to estimate indoor environmental concentrations beyond three days, the uncertainty in the predicted concentrations increases with increasing time. Estimating longer term chemical concentrations (beyond three days) for SVOCs is not recommended unless additional data (beyond this practice) is used, see (1).45.8 During the application of SPF, chemicals deposited on the non-applied surfaces (for example, floors and ceilings) are the result of both gaseous phase emissions from the SPF and overspray. It is difficult to separate these two processes with current analytical methods. At present, the difference in how these two processes impact the long-term emissions is not known. This practice combines these two processes to generate data for modeling inputs.1.1 This practice describes procedures for measuring the chemical emissions of volatile and semi-volatile organic compounds (VOCs and SVOCs) from spray polyurethane foam (SPF) insulation samples in a large-scale ventilated enclosure.1.2 This practice is used to identify emission rates and factors during SPF application and up to three days following application.1.3 This practice can be used to generate emissions data for research activities or modeled for the purpose to inform potential reentry and reoccupancy times. Potential reentry and re-occupancy times only apply to the applications that meet manufacturer guidelines and are specific to the tested formulation.1.4 This practice describes emission testing at ambient room and substrate temperature and relative humidity conditions recognizing chemical emissions may differ at different room and substrate temperatures and relative humidity.1.5 This practice does not address all SPF chemical emissions. This practice addresses specific chemical compounds of potential health and regulatory concern including methylene diphenyl diisocyanate (MDI), polymeric MDI (MDI oligomeric polyisocyanates mixture), flame retardants, aldehydes, and VOCs including blowing agents, and catalysts. Although specific chemicals are discussed in this practice, other chemical compounds of interest can be quantified (see target compound and generic formulation list in Appendix X1). Other chemical compounds used in SPF such as polyols, emulsifiers, and surfactants are not addressed by this practice. Particulate sizing and distribution are also outside the scope of this practice.1.6 Emission rates during application are determined from air phase concentration measurements that may include particle bound chemicals. SVOC deposition to floors and ceilings is also quantified for post application modeling inputs. SVOC emission rates should only be used for modeling purposes for the duration of data collection.1.7 Four quantification methods are described for isocyanates. The method chosen should consider safety issues such as flammability, the expected concentration, the presence of isocyanate aerosol during the phase of interest (during and post application), and if the tested SPF is high or low pressure.1.8 This practice references similar standard practices for design, construction, performance evaluation, and use of full-scale chambers for chemical emission testing.1.9 This practice references methods for the collection and analysis of air samples.1.10 This practice applies to two-component open cell and closed cell SPF insulation system formulations that are processed using high-pressure or low-pressure installation processing practices and equipment.1.11 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.12 This standard does not purport to address all of the safety concerns, if any, associated with its use. The application of SPF in a ventilated enclosure has the potential to generate a hazardous condition putting the individual responsible for spraying inserts at risk. It is the responsibility of the user of this standard to establish appropriate health and safety procedures and require appropriate certified personal protective equipment (PPE) to minimize chemical exposure. Individuals entering the ventilated enclosure during and after SPF application, for any amount of time, are expected to wear appropriate PPE.1.13 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.14 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Flash point measures the response of the test specimen to heat and ignition source under controlled laboratory conditions. It is only one of a number of properties that must be considered in assessing the overall flammability hazard of a material.5.2 Flash point is used in shipping and safety regulations to define flammable and combustible materials and classify them. Consult the particular regulation involved for precise definitions of these classes.5.3 Flash point can indicate the possible presence of highly volatile and flammable materials in a relatively nonvolatile or nonflammable material.5.4 These test methods use a smaller sample (2 mL to 4 mL) and a shorter test time (1 min to 2 min) than traditional test methods.5.5 Method A, IP 524 and EN ISO 3680 are similar methods for flash no-flash tests. Method B, IP 523 and EN ISO 3679 are similar methods for flash point determination.1.1 These test methods cover procedures for flash point tests, within the range of –30 °C to 300 °C, of petroleum products and biodiesel liquid fuels, using a small scale closed cup tester. The procedures may be used to determine, whether a product will or will not flash at a specified temperature (flash/no flash Method A) or the flash point of a sample (Method B). When used in conjunction with an electronic thermal flash detector, these test methods are also suitable for flash point tests on biodiesels such as fatty acid methyl esters (FAME).1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard should be used to measure and describe the properties of materials, products, or assemblies in response to heat and flame under controlled laboratory conditions and should not be used to describe or appraise the fire hazard or fire risk of materials, products, or assemblies under actual fire conditions. However, results of this test may be used as elements of a fire risk assessment which takes into account all of the factors which are pertinent to an assessment of the fire hazard of a particular end use.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Warning statements appear throughout. See also the Material Safety Data Sheets for the product being tested.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
62 条记录,每页 10 条,当前第 1 / 7 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页