微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 384元 / 折扣价: 327 加购物车

在线阅读 收 藏

定价: 819元 / 折扣价: 697 加购物车

在线阅读 收 藏
ASTM D243/D243M-22 Standard Test Method for Residue of Specified Penetration Active 发布日期 :  1970-01-01 实施日期 : 

5.1 This test method is used to determine the percentage of residue having a specified penetration at 100 g/5 s at 25 °C [77 °F]. This test method provides a residue for quality control or for use in other tests as desired.NOTE 1: The quality of the results produced by this standard are dependent on the competence of the personnel performing the procedure and the capability, calibration, and maintenance of the equipment used. Agencies that meet the criteria of Specification D3666 are generally considered capable of competent and objective testing, sampling, inspection, etc. Users of this standard are cautioned that compliance with Specification D3666 alone does not completely ensure reliable results. Reliable results depend on many factors; following the suggestions of Specification D3666 or some similar acceptable guideline provides a means of evaluating and controlling some of those factors.1.1 This test method is used to thermally reduce cutback asphalt, a road oil or a semisolid asphalt, having a penetration greater than 100, to a residue of specified penetration. It is primarily used with slow-curing cutback asphalt as specified in Specification D2026/D2026M.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3 Warning—Mercury has been designated by the United States Environmental Protection Agency (EPA) and many state agencies as a hazardous material that can cause central nervous system, kidney, and liver damage. Mercury, or its vapor, may be hazardous to health and corrosive to materials. Caution should be taken when handling mercury and mercury-containing products. See the applicable product Material Safety Data Sheet (MSDS) for details and EPA’s website—http://www.epa.gov/mercury/—for additional information. Users should be aware that selling mercury, mercury-containing products, or both, into your state may be prohibited by state law.1.4 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method is a standard procedure for determining the air leakage characteristics under specified air pressure differences at ambient conditions.NOTE 2: The air pressure differences acting across a building envelope vary greatly. The factors affecting air pressure differences and the implications or the resulting air leakage relative to the environment within buildings are discussed in the literature.4-6 These factors should be fully considered in specifying the test pressure differences to be used.5.2 Rates of air leakage are sometimes used for comparison purposes. Such comparisons may not be valid unless the components being tested and compared are of essentially the same size, configuration, and design.1.1 This test method covers a standard laboratory procedure for determining the air leakage rates of exterior windows, skylights, curtain walls, and doors under specified differential pressure conditions across the specimen. The test method described is for tests with constant temperature and humidity across the specimen. Persons interested in performing air leakage tests on units exposed to various temperature differences across the specimen should reference Test Method E1424.1.2 This laboratory procedure is applicable to exterior windows, skylights, curtain walls, and doors and is intended to measure only such leakage associated with the assembly and not the installation. The test method can be adapted for the latter purpose.NOTE 1: Performing tests under uncontrolled conditions or with a temperature differential across the specimen may affect the air leakage rate. This is not addressed by this test method.1.3 This test method is intended for laboratory use. Persons interested in performing field air leakage tests on installed units should reference Test Method E783.1.4 Persons interested in evaluating air permeance of building materials should reference Test Method E2178.1.5 Persons interested in determining air leakage of air barrier assemblies should reference Test Method E2357.1.6 Persons using this procedure should be knowledgeable in the areas of fluid mechanics, instrumentation practices, and shall have a general understanding of fenestration products and components.1.7 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.8 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statement, see Section 7.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The exterior building envelope and its components (for example, windows and doors) separate the interior conditioned spaces from exterior environmental factors such as heat, cold, rain, wind, noise dust, etc. Building materials and components can expand or contract to varying degrees, depending on seasonal and diurnal exterior ambient air temperatures. Fluctuations in the ambient air temperatures can alter the sealing characteristics of windows, curtain walls, and doors by changing weather seal compression ratios. Thermal expansion or contraction of framing materials coupled with thermal blowing due to temperature gradients through the product, and alterations in the effective leakage areas due to weather seal shrinkage and compression set, can also significantly alter the air leakage rates of these products in field service applications. Air leakage tests performed using Test Method E283 (a laboratory air leakage test performed at ambient temperature conditions) will not account accurately for changes in air leakage rates that may occur from dimensional changes in fenestration systems, materials, and components.5.2 It is recommended that test specifiers consult the manufacturer for recommended test temperature extremes.5.3 This procedure provides a means for evaluating air leakage rates of fenestration systems under various temperature and pressure conditions and air flow directions. It is also applicable for use in evaluating the efficiency of weather sealing products in fenestration systems. All air flow rates are converted to standard conditions to provide a means of comparison between measurements made at different ambient air temperature and pressure conditions.5.4 Air leakage rates are sometimes used for comparison purposes. Such comparisons may not be valid unless the components being tested and compared are of essentially the same size, configuration, and design.1.1 This test method provides a standard laboratory procedure for determining the air leakage rates of exterior windows, curtain walls, and doors under specified differential air temperature and pressure conditions across the specimen.1.2 Specified temperature and pressure conditions are representative of those that may be encountered at the exterior thermal envelope of buildings, excluding the effects of heat buildup due to solar radiation.1.3 This laboratory procedure is applicable to exterior windows, curtain walls, and doors and is intended to measure only such leakage associated with the assembly and not the installation; however, the test method can be adapted for the latter purpose.1.4 This is a laboratory procedure for testing at differential temperature conditions. Persons interested in a laboratory test at ambient conditions should reference Test Method E283. Persons interested in a field test on installed windows and doors should reference Test Method E783.1.5 Persons using this procedure should be knowledgeable in the areas of heat transfer, fluid mechanics, and instrumentation practices, and shall have a general understanding of fenestration products and components.1.6 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 7.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Dielectric withstand voltage testing is useful for design verification, quality control of materials, and workmanship.4.2 This test method is used to verify that the membrane switch or printed electronic device can operate safely at its rated voltage, and withstand momentary overpotentials due to switching, surges and other similar electrical phenomena.4.3 Specific areas of testing are, but not limited to:4.3.1 Conductor/dielectric/conductor crossing point,4.3.2 Close proximity of conductors, and4.3.3 Any other conductive surface such as shielding or metal backing panel.4.4 Dielectric withstand voltage testing may be destructive and units that have been tested should be considered unreliable for future use.4.5 Testing using ac voltage may be useful for switches intended for control circuits powered by ac voltages.1.1 This test method covers the verification of a specified dielectric withstand voltage or dielectric breakdown voltage of a membrane switch or printed electronic device.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This test method is a standard procedure for determining the air flow characteristics of various components of the window system under specified air pressure differences at ambient conditions.NOTE 3: The air pressure differences acting across a building envelope vary greatly. The factors affecting air pressure differences and the implications or the resulting air leakage relative to the environment within buildings are discussed in the literature.4 ,5,6 These factors should be fully considered in specifying the test pressure differences to be used.5.2 Rates of air leakage are sometimes used for comparison purposes. Such comparisons may not be valid unless the components being tested and compared are of essentially the same size, configuration, and design.1.1 This test method is a modified version of Test Method E283/E283M, and provides a standard laboratory procedure for determining air leakage separately through the face and sides of exterior windows, curtain walls, and doors under specified differential pressure conditions across the specimen. The test method described is for tests with constant temperature and humidity across the specimen.NOTE 1: Detailing buildings with continuous air barriers requires that the air barrier plane in a window system be clearly defined. When special circumstances dictate that the air barrier be sealed to the window frame at a location other than that used to seal the specimen to the test chamber in this test method, additional laboratory testing may be required to clarify potential paths of air flow through the sides of the window frame. The adapted testing procedure described herein is intended for this purpose.1.2 This laboratory procedure is applicable to exterior windows, curtain walls, and doors and is intended to measure only such leakage associated with the assembly and not the installation. The test method can be adapted for the latter purpose.NOTE 2: Performing tests at non-ambient conditions or with a temperature differential across the specimen may affect the air leakage rate. This is not addressed by this test method.1.3 This test method is intended for laboratory use. Persons interested in performing field air leakage tests on installed units should reference Test Method E783. Test Method E783 will not provide the user with a means of determining air flow through the sides of tested specimens.1.4 Persons using this procedure should be knowledgeable in the areas of fluid mechanics, instrumentation practices, and shall have a general understanding of fenestration products and components.1.5 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statement see Section 7.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This practice is intended for use in determining the sample size required to estimate, with specified precision, a measure of quality of a lot or process. The practice applies when quality is expressed as either the lot average for a given property, or as the lot fraction not conforming to prescribed standards. The level of a characteristic may often be taken as an indication of the quality of a material. If so, an estimate of the average value of that characteristic or of the fraction of the observed values that do not conform to a specification for that characteristic becomes a measure of quality with respect to that characteristic. This practice is intended for use in determining the sample size required to estimate, with specified precision, such a measure of the quality of a lot or process either as an average value or as a fraction not conforming to a specified value.AbstractThis practice covers simple methods for calculating how many units to include in a random sample in order to estimate with a specified precision, a measure of quality for all the units of a lot of material or produced by a process. It also treats the common situation where the sampling units can be considered to exhibit a single source of variability; it does not treat multi-level sources of variability.1.1 This practice covers simple methods for calculating how many units to include in a random sample in order to estimate with a specified precision, a measure of quality for all the units of a lot of material, or produced by a process. This practice will clearly indicate the sample size required to estimate the average value of some property or the fraction of nonconforming items produced by a production process during the time interval covered by the random sample. If the process is not in a state of statistical control, the result will not have predictive value for immediate (future) production. The practice treats the common situation where the sampling units can be considered to exhibit a single (overall) source of variability; it does not treat multi-level sources of variability.1.2 The system of units for this standard is not specified. Dimensional quantities in the standard are presented only as illustrations of calculation methods. The examples are not binding on products or test methods treated.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Sampling shall be selected in a random manner, ensuring that any unit in the lot has an equal chance of being chosen. Sampling should not be localized by selections being taken from the top of a container or from only one container of multi-container lots.4.2 The purchaser should be aware of the supplier's quality assurance system. This can be accomplished by auditing the supplier's quality system, if qualified auditors are available, or by third-party assessment certification, such as provided by IATF 16949, or ISO 9001.1.1 This practice provides sampling methods for determining how many fasteners to include in a random sample in order to determine the acceptability or disposition of a given lot of fasteners.1.2 This practice is for mechanical properties, physical properties, performance properties, coating requirements, and other quality requirements specified in the standards of ASTM Committee F16. Dimensional and thread criteria sampling plans are the responsibility of ASME Committee B18.1.3 This practice provides for two sampling plans: one designated the “detection process,” as described in Terminology F1789, and one designated the “prevention process,” as described in Terminology F1789.1.4 This practice is intended to be used as either a Final Inspection Plan for manufacturers, or as a Receiving Inspection Plan for purchasers/users. It is not valid for third-party qualification testing.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers nonreinforced concrete pipe designed for specified strengths and intended to be used for the conveyance of sewage, industrial wastes, and storm water and for the construction of culverts. Strength test and load test shall be made in accordance with the specified requirements.1.1 This specification covers nonreinforced concrete pipe designed for specified strengths and intended to be used for the conveyance of sewage, industrial wastes, and storm water and for the construction of culverts.1.2 A complete companion to Specification C985 has been developed, C985M; therefore, no metric equivalents are presented in this specification.NOTE 1: This specification is a manufacturing and purchase specification only and does not include requirements for bedding, backfill, or the relationship between field load conditions and the designated strength of the pipe. However, experience has shown that the successful performance of this product depends upon the proper selection of the pipe strength, type of bedding and backfill, and care that the installation conforms to the construction specifications. The owner of the concrete pipe specified herein is cautioned that he must correlate the field requirements with the pipe strength specified and provide inspection at the construction site.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
12 条记录,每页 10 条,当前第 1 / 2 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页