微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

4.1 The accuracy of many analytical measurements is dependent upon the manner in which the standard solutions are prepared and stored, and the accuracy with which they are standardized. Combining the methods recommended for the preparation and handling of such solutions into one practice eliminates the necessity for covering such details in all of the methods wherein the solutions are used.1.1 This practice covers procedures for the preparation, standardization, and storage of the standard volumetric solutions and reagent testing solutions commonly used in chemical analysis.1.2 The information in this practice is arranged as follows:  SectionsReferenced Documents 2Terminology 3 4Apparatus 5Temperature effects 6Measurements 7Reagents 8Concentration of solutions 9Mixing of solutions 10Storage of solutions 11Preparation and standardization of solutions 12Precision and Bias 13Sodium hydroxide solution, 0.02 to 1.0 meq/mL (N) 14 to 19Hydrochloric acid, 0.02 to 1.0 meq/mL (N) 20 to 28Sulfuric acid, 0.02 to 1.0 meq/mL (N) 29 to 33Hydrochloric acid, special 1 meq/mL (N) 34 to 38Sulfuric acid, special 1 meq/mL (N) 39 to 43Silver nitrate solution, 0.1 meq/mL (N) 44 to 48Ammonium thiocyanate solution, 0.1 meq/mL (N) 49 to 53Iodine solution, 0.1 meq/mL (N) 54 to 58Sodium thiosulfate solution, 0.1 meq/mL (N) 59 to 63Potassium permanganate solution, 0.1 meq/mL (N) 64 to 68Potassium dichromate solution, 0.1 meq/mL(N) 69 to 73Methanolic sodium hydroxide solution, 0.5 meq/mL (N) 74 to 79Ceric sulfate solution, 0.1 meq/mL (N) 80 to 84Acetous perchloric acid, 0.1 meq/mL (N) 85 to 89Disodium ethylenediaminetetraacetate solution, 0.05 mol/L(M) 90 to 94Standard ion solutions 95Nonstandardized reagent solutions and indicator solutions 961.3 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific warning statements are given throughout this practice. Consult current OSHA regulations, suppliers’ Safety Data Sheets, and local regulations for all materials used in this specification.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 In-line meters provide a rapid means of detecting moisture content of lumber or wood products in processing (that is, on a continuous production line). Two major uses are monitoring the performance of the drying process (air drying, kiln drying), and providing sorting or identification of material at predetermined levels of moisture content. These measurements are inferential in the sense that physical measurements are made and compared against calibration curves to obtain an indirect measure of moisture content. These measurements are influenced by one or more physical properties such as actual moisture content (average and gradient; see Appendix X5), density, surface moisture, chemical composition, size, and temperature of wood. In addition, the measurements are also influenced by environmental conditions and the design specifications of the meter. The best performance is obtained by an awareness of the effect of each parameter on the meter output and correction of readings as specified by these test methods.4.2 The two major anticipated users of these test methods are instrument manufacturers whose primary concern is laboratory standardization and calibration, and instrument owners whose primary concern is field standardization and calibration. These test methods present the laboratory and the field as separate tracks (see Appendix X2).4.2.1 Laboratory Standardization and Calibration—This portion of these test methods is intended for guidance of equipment manufacturers. Specific test recommendations are tailored to the capabilities of a laboratory environment.4.2.2 Field Standardization and Calibration—The predominant use of in-line meters is in production in which lumber characteristics and environmental conditions reflect actual mill processes. Field standardization and calibration is essential to address or encompass much of the variability in production.NOTE 1: Applications using the output of the in-line moisture meter can modify the meter output signals or have inherent response characteristics that are not representative of the meter.1.1 These test methods apply to instruments designed to detect, or measure, moisture in wood which has been dried below the fiber saturation point. The purpose of these tests is to provide a unified standard against which such systems can demonstrate their suitability for their intended use (see Appendix X1).1.1.1 Sensitivity to thin layers of surface moisture such as caused by dew or brief rain exposure is not addressed by these methods. Certain applications, such as screening material for surface adhesion, require additional assessment methodology and criteria (see Appendix X5).1.2 The standard is configured to support tests by moisture meter manufacturers as well as end-users of such systems, therefore the text follows two tracks (see Appendix X2).1.3 Test methods specified for manufacturers are generally designed for laboratory settings and are intended to provide a standard against which a manufacturer certifies calibration and general system conformance.1.4 Test methods for end-users are generally designed for field settings and are intended as a standardized set of procedures for determining the suitability of a specific machine for a particular use.1.5 Applications such as lumber marking or sorting systems utilizing the output of the in-line meter are not part of this standard.1.6 Applications requiring sensitivity to and identification of localized wet areas are limited to general recommendations. The presence of wet-spots is the subject of Appendix X8.1.7 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

4.1 Hand-held meters provide a rapid means of sampling MC of wood-based materials during and after processing to maintain quality assurance and compliance with standards. These measurements are influenced by actual MC, a number of other wood variables, environmental conditions, geometry of the measuring probe circuitry, and design of the meter. The maximum accuracy can only be obtained by an awareness of the effect of each parameter on the meter output and correction of readings as specified by this test method.4.1.1 This test method employs controlled conditions and straight-grain, clear wood specimens to provide measurements that are reproducible in a laboratory. The controlled conditions prevent moisture and temperature gradients in the test specimen.4.1.2 In laboratory calibration, the reference direct moisture measurements (for example, Test Methods D4442) shall be made only in the area of direct measurement of the meter. This minimizes error associated with sampling of differing areas of measurement between this test method and that of the reference (Test Methods D4442).4.2 Most uses of hand-held moisture meters employ correlative (predictive) relationships between the meter reading and wood areas or volumes that exceed that of the direct meter measurement (for example, larger specimens, pieces of lumber, or lots). These correlative relationships are beyond the scope of this test method. (See Practice D7438.)1.1 This test method applies to the measurement of moisture content (MC) of solid wood products, including those containing additives (that is, chemicals or adhesives) for laboratory standardization and calibration of hand-held moisture meters1.2 This test method makes no distinction between meter measurement technologies for standardization and calibration requirements. Provision is made for test specimen size to accommodate specific meters. Appendix X1 provides an explanatory discussion and history corresponding to the mandatory sections. Fundamental measurement technologies are described in Appendix X2 when available.1.2.1 Meters employing differing technologies may not provide equivalent readings under the same conditions. When this test method has been applied, it is assumed that the referenced meter is acceptable unless otherwise specified. Meters shall be calibrated with respect to MC by direct measurement as determined by Test Methods D4442.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The objective of this document is to provide guidance in the production, characterization, testing, and standardization of: (1) polymerizable collagen starting materials; and (2) collagen polymeric materials produced with polymerizable collagen formulations, used for surgical implants, substrates for TEMPs, vehicles for therapeutic cells and molecules, and 3D in-vitro tissue systems for basic research, drug development, and toxicity testing. This guide can be used as an aid in the selection, characterization, and standardization of the appropriate polymerizable collagen starting formulations as well as collagen polymeric materials prepared from polymerizable collagens for a specific use. Not all tests or parameters are applicable to all uses of collagen and users are expected to select and justify a subset of the tests for characterization purposes.4.2 This guide can be used by the following types of users:4.2.1 Manufacturers of polymerizable collagens and collagen polymeric materials who wish to set specifications for their products or provide characterization data for customers or users. They may also use the terminology and characterization sections to specify and differentiate the properties of polymerizable collagens and collagen polymeric materials.4.2.2 Producers of collagen polymeric materials that use polymerizable collagen as starting materials. Producers may use this guide to evaluate and characterize multiple sources of polymerizable collagen. They may also use this guide to assist with evaluation and comparison of single or multiple sources of polymerizable collagen and collagen polymeric materials.4.2.3 Researchers may use this guide as a reference for properties and test methods that can be used to reproducibly evaluate polymerizable collagens and collagen polymeric materials.4.3 The collagen covered by this guide may be used in a broad range of applications, forms, or medical products, for example (but not limited to) wound and hemostatic dressings, surgical implants or injectables (including in-situ forming), hybrid medical devices, TEMPs, injectable (including in-situ forming) or implantable delivery vehicles for therapeutic cells, molecules, and drugs, and 3D in-vitro tissue systems or models for basic research, drug development, and toxicity testing. The practical application of polymerizable collagens and collagen polymeric materials should be based, among other factors, on biocompatibility, application-specific performance measures, as well as chemical, physical, and biological test data. Recommendations in this guide should not be interpreted as a guarantee of success for any specific research or medical application.4.4 The following general areas should be considered when determining if the collagen supplied satisfies requirements for use in the above mentioned medical and research applications: source of polymerizable collagen, impurities profile, and comprehensive chemical, physical, and biological characterization and testing.4.5 The following documents or other relevant guidance documents from appropriate regulatory bodies relating to the production, regulation, and regulatory approval of devices, biologics, drugs, and combination products should be considered when determining if the collagen supplied satisfies requirements for use in medical and research products, including TEMPs, therapeutic delivery vehicles, and 3D in-vitro tissue systems:FDA CFR:21 CFR 3: Product Jurisdiction:   http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/    CFRSearch.cfm?CFRPart=321 CFR 58: Good Laboratory Practice for Nonclinical Laboratory Studies:   http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/    CFRSearch.cfm?CFRPart=58 FDA/CDRH CFR and Guidances:21 CFR Part 803: Medical Device Reporting:   http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/    CFRSearch.cfm?CFRPart=80321 CFR 812: Investigational Device Exemptions:    http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/    CFRSearch.cfm?CFRPart=81221 CFR 814: Premarket Approval of Medical Devices:   http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/    CFRSearch.cfm?CFRPart=81421 CFR 820: Quality System Regulation:   http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/    CFRSearch.cfm?CFRPart=820Design Control Guidance for Medical Device Manufacturers:   http://www.fda.gov/cdrh/comp/designgd.pdfPreproduction Quality Assurance Planning Recommendations for Medical Device Manufacturers (FDA 90-4236):   http://www.fda.gov/cdrh/manual/appende.htmlThe Review and Inspection of Premarket Approval Applications under the Bioresearch Monitoring Program—Draft Guidance for Industry and FDA Staff:   http://www.fda.gov/cdrh/comp/guidance/1602.pdf FDA/CDRH Search Engines:CDRH Guidance Search Engine:   http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfggp/   search.cfmCDRH Premarket Approval (PMA) Search Engine:   http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMA/   pma.cfmCDRH 510(k) Search Engine:   http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/   pmn.cfmCDRH Recognized STANDARDS Search Engine:   http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfStandards/   search.cfm FDA/CBER CFR and Guidances:21 CFR 312: Investigational New Drug Application:   http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/    CFRSearch.cfm?CFRPart=31221 CFR 314: Applications for FDA Approval to Market a New Drug:   http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/    CFRSearch.cfm?CFRPart=3121 CFR 610: General Biological Products Standards:   http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/    CFRSearch.cfm?CFRPart=61021 CFR 1271: Human Cells, Tissues and Cellular and Tissue-Based Products:   http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/    CFRSearch.cfm?CFRPart=1271Cellular & Gene Therapy Guidances and Other Publications:   http://www.fda.gov/cber/genetherapy/gtpubs.htmHuman Tissue Guidances and Other Publications:   http://www.fda.gov/cber/tissue/docs.htmCBER Product Approval Information:   http://www.fda.gov/cber/efoi/approve.htm21 CFR 600, 601 BLA Regulations:   http://www.access.gpo.gov/nara/cfr/waisidx_07/21cfrv7_07.html21 CFR 210, 211 GMP Regulations:   http://www.access.gpo.gov/nara/cfr/waisidx_07/21cfr210_07.html1.1 This guide is intended to provide characteristics, properties, test methods, and standardization approaches for evaluation and identification of specific polymerizable collagen formulations and collagen polymeric materials produced with these formulations.1.2 This guide focuses on characterization of purified polymerizable forms of type I collagen, which is the most abundant collagen in mammalian connective tissues and organs, including skin, bone, tendon, and blood vessels. Polymerizable type I collagen may be derived from a variety of sources including, but not limited to, animal or cadaveric tissues, cell culture, recombinant cell culture, and chemical synthesis.1.2.1 This guide covers evaluation of polymerizable collagens and collagen polymeric materials prepared from polymerizable collagens for use as a starting material for wound and hemostatic dressings, surgical implants, substrates for tissue-engineered medical products (TEMPs), delivery vehicles for therapeutic cells or molecules, and 3D in-vitro tissue systems for basic research, diagnostics, drug development, and toxicity testing. Most collagen products on the market today are regulated as devices since their primary intended purpose is not achieved through chemical action within or on the body. However, a medical product comprising polymerizable collagens or collagen polymeric materials may be regulated as a device, biologic, drug, or combination product depending on its intended use and primary mode of action.1.2.2 Polymerizable collagen or collagen self-assembly implies that the collagen composition exhibits spontaneous macromolecular assembly from its components without the addition of exogenous factors such as cross-linking agents. Polymerizable collagens may include but are not limited to: (1) tissue-derived monomeric collagens, including tropocollagen or atelocollagen, and oligomeric collagens; (2) collagen proteins and peptides produced through in vitro cell culture, with or without using recombinant technology; and (3) chemically synthesized collagen mimetic peptides. It should be noted that the format of collagen polymeric material products also will vary and may include injectable solutions that polymerize in situ as well as preformed sheets, particles, spheres, fibers, sponges, matrices/gels, coatings, films, and other forms.1.2.3 This guide may serve as a template for characterization and standardization of type I fibrillar collagen or other collagen types that demonstrate polymerization or self-assembly.1.3 This guide does not provide a significant basis for assessing the biological safety (biocompatibility) of polymerizable collagens and collagen polymeric materials. While the ability of collagen polymeric materials to guide cellular responses through provision of cellular adhesion and proteolytic domains as well as physical constraints (for example, structural, cell-matrix traction force) has been well documented through extensive clinical and basic research studies (1-5),2 users are directed to the ISO 10993 series for evaluating biological risks of medical devices. The biocompatibility and appropriateness of use for a specific application is the responsibility of the product manufacturer.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 The following precautionary caveat pertains only to the test method portion, Sections 6 and 7, of this guide: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
4 条记录,每页 10 条,当前第 1 / 1 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页