微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

1.1 This specification covers the physical characteristics of round timber construction poles to be used either treated or untreated.1.2 This test method covers basic principles for establishing recommended design stress values for round timber construction poles that are applicable to the quality described.1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Summary: 5.1.1 Residual stresses are present in almost all materials. They can be created during the manufacture or during the life of the material. Residual stresses can be a major factor in the failure of a material, particularly one subjected to alternating service loads or corrosive environments. Residual stress may also be beneficial, for example, the compressive stresses produced by shot peening. The hole-drilling strain-gage technique is a practical general-purpose method for determining residual stresses.1.1 Residual Stress Determination: 1.1.1 This test method specifies a hole-drilling procedure for determining in-plane residual stresses near the surface of an isotropic linearly elastic material. It is applicable to residual stress determinations where the stresses do not vary significantly across the diameter of the drilled hole. The measured stresses are the in-plane residual stresses that exist within the depth of the drilled hole. Stress sensitivity rapidly decreases with depth from the measured surface and deep interior stresses cannot be evaluated. The measured residual stresses are described as “uniform” if they remain approximately constant within the hole depth, “non-unifom” if they vary significantly.1.1.2 In general, “blind” holes are used, where the depth of the drilled hole and therefore the depth of the residual stress evaluation is less than the workpiece thickness. However, for a thin workpiece, it is also possible to do through-thickness measurements of uniform (membrane) stresses using a through-hole.1.2 Stress Measurement Range: 1.2.1 This test method applies in cases where material behavior is linear-elastic. When near-yeild residual stresses are present, it is possible for local yielding to occur due to the stress concentration around the drilled hole. Satisfactory measurement results can be achieved providing the residual stresses do not exceed about 80 % of the material yield stress for blind-hole drilling and about 50 % of the material yield stress for through-hole drilling.1.3 Workpiece Damage: 1.3.1 The hole-drilling method is often described as “semi-destructive” because the damage that it causes is localized and often does not significantly affect the usefulness of the workpiece. In contrast, most other mechanical methods for measuring residual stresses substantially destroy the workpiece. Since hole drilling does cause some damage, this test method should be applied only in those cases either where the workpiece is expendable, or where the introduction of a small shallow hole will not significantly affect the usefulness of the workpiece.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 This practice is primarily intended for use by associations, third-party grading agencies, technical societies and other groups that develop national design standards and use recommendations for round timber piles.4.2 This practice provides procedures for establishing compression parallel to grain and bending stresses for round timber piles including: sampling of material for testing; methods of test and property calculation procedures; distribution analysis of test data; procedures for determining adjustments for critical section location; pile oversize, load sharing and treatment; and procedures for deriving allowable stresses.4.3 In using allowable stresses established under this practice, factors specific to each end use which may affect the performance of the pile system shall be considered by the designer. Such factors include the location of the critical section, the bearing capacity of the soil, the ability of the pile to withstand driving forces, the properties of the cap or load distributive element tying piles together and the loading and conditions of service.1.1 This practice contains procedures for establishing allowable compression parallel to grain and bending stresses for round timbers used for piling, based on results from full-size tests.NOTE 1: Allowable stresses for compression perpendicular to grain and shear properties are established in accordance with the provisions of Practice D2899.1.2 Stresses established under this practice are applicable to piles conforming to the size, quality, straightness, spiral grain, knot, shake and split provisions of Specification D25.1.3 A commentary on the practice is available from ASTM International.1.4 The values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This practice is intended for use by associations, technical societies and other groups that develop national design standards and use recommendations for round timber piles.4.2 In using allowable stresses established under this practice, factors specific to each end use which may affect the performance of the pile system shall be considered. Such factors include the location of the critical section, the bearing capacity of the soil, the ability of the pile to withstand driving forces and conditions of service.1.1 This practice contains procedures for establishing allowable stresses for round timber piles starting with clear wood strength properties.1.2 Stresses established under this practice are applicable to piles conforming to the quality, straightness, spiral grain, knot, check, shake, and split provisions of Specification D25.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Thermoplastic moldings contain residual stresses due to differential cooling rates through the thickness of the molding. Changes in residual stress have been found to occur with time after molding due to stress relaxation. Many part performance parameters as well as part failures are affected by the level of residual stress present in a part. Residual stresses cause shrinkage, warpage, and a decrease in environmental stress crack resistance. This practice estimates the relative magnitude of residual stresses in parts produced from the series of sulfone plastics (SP), namely polysulfone (PSU), polyethersulfone (PESU), and polyphenylsulfone (PPSU) materials.5.2 No direct correlation has been established between the results of the determination of residual stresses by this practice and part performance properties. For this reason, this practice is not recommended as a substitute for other tests, nor is it intended for use in purchasing specifications for parts. Despite this limitation, this practice does yield information of value in indicating the presence of residual stresses and the relative quality of plastic parts.5.3 Residual stresses cannot be easily calculated, hence it is important to have an experimental method, such as this practice, to estimate residual stresses.5.4 This practice is useful for extruders and molders who wish to evaluate residual stresses in SP parts. This can be accomplished by visual examination after immersion in one or more chemical reagents to evaluate whether or not cracking occurs. Stresses will relax after molding or extrusion. Accordingly, both immersion in the test medium and visual examination must be made at identical times and conditions after processing, if comparing parts. It is important to note the differences in part history. Thus, this technique is suitable as an indication for quality of plastic processing.5.5 The practice is useful primarily for indicating residual stresses near the surface.1.1 This practice covers the evaluation of residual stresses in extruded profile or molded SP parts. The presence and relative magnitude of residual stresses are indicated by the crazing of the specimen part upon immersion in one or more of a series of chemical reagents. The specified chemical reagents were previously calibrated by use of Environmental Stress Cracking (ESC) techniques to cause crazing in sulfone plastics (SP) at specified stress levels.1.2 This practice applies only to unfilled injection molding and extrusion grade materials of high molecular weight as indicated by the following melt flow rates: PSU 9 g/10 min, max., PESU 30 g/10 m, max, and PPSU 25 g/10 min, max. Lower molecular weight (higher melt flow) materials will craze at lower stress levels than indicated in Tables 1-3. (See Specification D6394 for melt flow rate conditions.)TABLE 1 Liquid Reagents for Residual Stress Test for PSUMixture Mixture Composition Critical Stress, MPa (psi)% by volume Ethanol % by volume Ethyl Acetate1 50 50 15.2 (2200)2 43 57 12.1 (1750)3 37 63 9.0 (1300)4 25 75 5.5 (800)TABLE 2 Liquid Reagents for Residual Stress Test for PESUMixture Mixture Composition Critical Stress, MPa (psi)% by volume Ethanol % by volume MEK1 50 50 17.9 (2600)2 40 60 10.3 (1500)3 20 80 6.9 (1000)4 0 100 5.9 (850)TABLE 3 Liquid Reagents for Residual Stress Test for PPSUMixture Mixture Composition Critical Stress, MPa (psi)% by volume Ethanol % by volume MEK1 50 50 22.8 (3300)2 25 75 13.8 (2000)3 10 90 9.0 (1300)4 0 100 8.0 (1150)1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.NOTE 1: There is no known ISO equivalent for this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The strength and performance of heat-strengthened and fully-tempered glass is greatly affected by the surface and edge stress induced during the heat-treating process.5.2 The edge and surface stress levels are specified in Specification C1048, in the Engineering Standards Manual3 of GANA Tempering Division and in foreign specifications.5.3 This test method offers a direct and convenient way to non-destructively determine the residual state of stress on the surface and at the edge of annealed and heat-treated glass.1.1 This test method covers the determination of edge stresses and surface stresses in annealed, heat-strengthened, and fully tempered flat glass products.1.2 This test method is non-destructive.1.3 This test method uses transmitted light and is, therefore, applicable to light-transmitting glasses.1.4 The test method is not applicable to chemically-tempered glass.1.5 Using the procedure described, surface stresses can be measured only on the “tin” side of float glass.1.6 Surface-stress measuring instruments are designed for a specific range of surface index of refraction.1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

This index test method indicates an unvegetated RECP’s ability to reduce soil erosion caused by shear stress induced by moving water under bench-scale conditions. Only tangential shear is measured in this method. Radial and uplift forces generated by the circular motion of the water are not measured.This test method is bench-scale and therefore, appropriate as an index test for general soil/product composite behavior under hydraulic shear conditions, and for product quality assurance/conformance testing. The results of this test shall not be interpreted as indicative of field performance.1.1 This index test method establishes the guidelines, requirements and procedures for evaluating the ability of unvegetated Rolled Erosion Control Products (RECPs) to protect soil (sand) from hydraulically induced shear stress in a bench-scale apparatus.1.2 This index test method utilizes bench-scale testing procedures and shall not be interpreted as indicative of field performance.1.3 This index test is not intended to replace full-scale simulation or field testing in acquisition of performance values that are required in the design of erosion control measures utilizing unvegetated RECPs.1.4 The values stated in SI units are to be regarded as standard. The inch-pound values given in parentheses are provided for information purposes only.This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

The test method is useful for the following:Classification of Powders—The cohesion and angle of internal friction are flowability indicators of powders and can be used to classify the powders.Quality Control—For a number of industrial applications flowability factors are used to compare the material flowability at different times during production. The material produced has to be held within given limits for each application and each powder so as to ensure trouble-free operation.Material Engineering—Powder properties are influenced by particle size, particle size distribution, fat content, humidity and other parameters. By selecting the correct parameters and the correct mixtures of powders, the required mechanical properties of the product are achieved.Design of Handling Equipment—For certain storage and conveyor equipment mathematical models exist which require the mechanical properties of powders.Note 2—The quality of the result produced by this standard is dependent on the competence of personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D 3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D 3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D 3740 provides a means of evaluating some of those factors. Practice D 3740 was developed for agencies engaged in the testing or inspection (or both) of soil and rock. As such it is not totally applicable to agencies performing this standard. However, users of this standard should recognize that the framework of Practice D 3740 is appropriate for evaluating the quality of an agency performing this standard. Currently there is no known qualifying national authority that inspects agencies that perform this standard.1.1 This test method is applied to the measurement of the mechanical properties of powders as a function of normal stress.1.2 This apparatus is suitable measuring the properties of powders and other bulk solids, up to a particle size of 5000 micron.1.3 This method comprises four different test procedures for the determination of powder mechanical properties:1.3.1 Test A—Measurement of INTERNAL FRICTION as a function of normal stress.1.3.2 Test B—Measurement of WALL FRICTION as a function of normal stress.1.3.3 Test C—Measurement of BULK DENSITY as a function of normal stress and time.1.3.4 Test D—Measurement of DEGRADATION as a function of normal stress.1.4 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D 6026.1.4.1 The procedures used to specify how data are collected/recorded or calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives, and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Stresses in coatings arise as a result of their shrinkage or expansion if expected movements are prevented by coating adhesion to its substrate.5.2 There are several causes leading to arrival of stresses in the coatings: film formation (cross-linking, solvent evaporation, etc.); differences in thermal expansion coefficients between coating and substrate; humidity and water absorption; environmental effects (ultraviolet radiation, temperature and humidity), and others.5.3 Knowledge of the internal stresses in coatings is very important because they may effect coating performance and service life. If the internal stress exceeds the tensile strength of the film, cracks are formed. If stress exceeds adhesion between coating and substrate, it will reduce adhesion and can lead to delamination of coatings. Quantitative information about stresses in coatings can be useful in coating formulation and recommendations for their application and use.5.4 This method has been found useful for air-dry industrial organic coatings but the applicability has not yet been assessed for thin coatings (thickness <0.0254 mm (.001 in.), for powder and thermally-cured coatings.1.1 This test method covers the procedure for measurements of internal stresses in organic coatings by using the cantilever (beam) method.1.2 This method is appropriate for the coatings for which the modulus of elasticity of substrate (Es) is significantly greater than the modulus of elasticity of coating (Ec) and for which the thickness of substrate is significantly greater than thickness of coating (see Note 7 and Note 8).1.3 The stress values are limited by the adhesion values of coating to the substrate and by the tensile strength of the coating, or both.1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and to determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
9 条记录,每页 15 条,当前第 1 / 1 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页