微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

3.1 Filaments are available in a variety of cross-sections and materials. A measure of bulk density permits the brushmaker to estimate the weight of filament required to prepare a given number of brushes.1.1 This test method covers a procedure for measuring the weight of filaments per unit volume.1.2 This method is applicable only to monofilament with tapered longitudinal profiles.1.3 The values given in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Viscosity values at the shear rate and temperature of this test method have been indicated to be related to the viscosity providing hydrodynamic lubrication in automotive and heavy duty engines in severe service.75.2 The viscosities of engine oils under such high temperatures and shear rates are also related to their effects on fuel efficiency and the importance of high shear rate, high temperature viscosity has been addressed in a number of publications and presentations.71.1 This test method covers the laboratory determination of the viscosity of engine oils at 150 °C and 1.0·106 s−1 using a viscometer having a slightly tapered rotor and stator called the Tapered Bearing Simulator (TBS) Viscometer.21.2 The Newtonian calibration oils used to establish this test method range from approximately 1.2 mPa·s to 7.7 mPa·s at 150 °C. The precision has only been determined for the viscosity range 1.47 mPa·s to 5.09 mPa·s at 150 °C for the materials listed in the precision section.1.3 The non-Newtonian reference oil used to establish the shear rate of 1.0·106 s−1 for this test method has a viscosity closely held to 3.55 mPa·s at 150 °C by using the absolute viscometry of the TBS.1.4 Manual, semi-automated, and fully automated TBS viscometers were used in developing the precision statement for this test method.1.5 Application to petroleum products such as base oils and formulated engine oils was determined in preparing the viscometric information for this test method.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6.1 This test method uses the milliPascal·second (mPa·s) as the unit of viscosity. This unit is equivalent to the centipoise (cP).1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 A solvent cement bonder/installer must follow all procedures to produce consistently strong and leak-free joints, either in shop operations or in the field.1.1 This practice describes a two-step (primer and solvent cement) method of joining poly(vinyl chloride) (PVC) or chlorinated poly(vinyl chloride) (CPVC) pipe and piping components with tapered sockets.NOTE 1: Simplified procedures may be allowed in non-pressure applications where local codes permit.NOTE 2: Where conflicts occur between the code and the manufacturer’s installation instructions, the more restrictive provisions apply.1.2 The products covered by this practice are intended for use with the distribution of pressured liquids only, which are chemically compatible with the piping materials. Due to inherent hazards associated with testing components and systems with compressed air or other compressed gases, some manufacturers do not allow pneumatic testing of their products. Consult with specific product/component manufacturers for their specific testing procedures prior to pneumatic testing.NOTE 3: Pressurized (compressed) air or other compressed gases contain large amounts of stored energy which present serious safety hazards should a system fail for any reason.1.3 This standard practice does not address the one-step method of joining pipe and piping components with tapered sockets with solvent cement without the use of primer. For the one-step method see Practice F3328.1.4 The techniques covered are applicable to joining PVC to PVC or CPVC to CPVC pipe and piping components with tapered sockets. In the remainder of this standard practice, the term “piping components with tapered sockets”, whether it be bell end pipe, spigot connections, or any other type of tapered connections, will be referred to as “fittings.”1.5 A partial list of standards for PVC and CPVC pipe, piping components, and solvent cements suitable for use in joining pipe and fittings is given in Appendix X1.1.6 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.7 The text of this practice references notes and footnotes that provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the practice.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test practice is designed to produce tensile property data for material specifications, research and development, quality assurance, and structural design and analysis. Factors that influence the tensile response and should therefore be reported include the following: materials (laminates and adhesive), methods of material preparation including surface preparation prior to bonding, lay-ups, specimen stacking sequence, joint taper ratio or step length, ply overlap length, material relative thicknesses and stiffness of the parent and repair laminates, adhesive bond stiffness, specimen preparation, specimen conditioning, environment of testing, specimen alignment and gripping, speed of testing, time at temperature, void content, and volume percent reinforcement. Properties in the test direction, which may be obtained from this test practice, include the following:5.1.1 Ultimate tensile strength (based on the nominal parent material thickness), (Fptu).5.1.2 Ultimate tensile strength (based on the nominal repair material thickness), (Frtu).5.1.3 Ultimate running force per repair ply, (Nj).1.1 This test practice defines the procedure for determination of the tensile strength of a tapered or stepped joint of polymer matrix composite materials. It is applicable to secondary bonded or co-bonded laminates with either unidirectional plies or woven fabric reinforcements. The materials to be bonded may be different material systems. In the bondline, a separate adhesive material may or may not be used (example: adhesives may be used with a prepreg system or may not be used with a wet lay-up repair system). The range of acceptable test laminates and thicknesses is described in 8.2.1.1.2 This practice supplements Test Method D3039/D3039M for tensile loading. Several important test specimen parameters (for example, joint length, ply overlaps, step depth, and taper ratio) are not mandated by this practice, however, these parameters are required to be specified and reported to support repeatable results.1.3 Unidirectional (0° ply orientation) tape composites, textile composites, as well as multidirectional composite laminates, can be tested.1.4 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.4.1 Within the text the inch-pound units are shown in brackets.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This specification covers requirements for metric series, tapered roller bearings with a single row of rollers.1.2 Intended Use—The bearings covered in this specification are intended to be used in general industrial and vehicle applications where the operating temperature does not exceed 120 °C (250 °F).1.3 This specification contains many of the requirements of DS3225, which was originally developed by the Department of Defense and maintained by the Defense Supply Center in Richmond. The following government activity codes may be found in the Department of Defense, Standardization Directory SD-1.2Preparing Activity Custodians Review ActivitiesDLA-GS4 Army-AT Army-AV  Navy-MC Navy –MC, SH  Air Force-99 Air Force-84    Other-NS1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Viscosity measured under the conditions of this test method is considered to be representative of that at the temperatures and shear rates but not the pressures in the journal bearings of internal combustion engines under operating conditions.5.2 The relevance of these conditions to the measurement of engine-oil viscosity has been discussed in many publications.65.3 The high temperature high shear (HTHS) viscosity at this shear rate can be measured at other temperatures using this apparatus. This is achieved by the use of a different range of Newtonian calibration fluids. The precision has not been studied for any temperature or viscosity range not noted in the precision section.1.1 This test method2 covers the laboratory determination of the viscosity of oils at 150 °C and 1 × 106 s–1 and at 100 °C and 1 × 106 s–1, using high shear rate tapered-plug viscometer models BE/C or BS/C.1.2 Newtonian calibration oils are used to adjust the working gap and for calibration of the apparatus. These calibration oils cover a range from approximately 1.4 mPa·s to 5.9 mPa·s (cP) at 150 °C and 4.2 mPa·s to 18.9 mPa·s (cP) at 100 °C. This test method should not be used for extrapolation to higher viscosities than those of the Newtonian calibration oils used for calibration of the apparatus. If it is so used, the precision statement will no longer apply. The precision has only been determined for the viscosity range 1.48 mPa·s to 5.07 mPa·s at 150 °C and from 4.9 mPa·s to 11.8 mPa·s at 100 °C for the materials listed in the precision section.1.3 A non-Newtonian reference oil is used to check that the working conditions are correct. The exact viscosity appropriate to each batch of this oil is established by testing on a number of instruments in different laboratories. The agreed value for this reference oil may be obtained from the chairman of the Coordinating European Council (CEC) Surveillance Group for CEC L-36-90, or from the distributor.1.4 Applicability to products other than engine oils has not been determined in preparing this test method.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard except those noted below.1.5.1 Exception—This test method uses the SI unit millipascal-second (mPa·s) as the unit of viscosity. (1 cP = 1 mPa·s.)1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Viscosity at the shear rate and temperature of this test method is thought to be particularly representative of bearing conditions in large medium speed reciprocating engines as well as automotive and heavy duty engines operating in this temperature regime.5.2 The importance of viscosity under these conditions has been stressed in railroad specifications.5.3 For other industry needs this method may also be run at 80 °C by using different crossover calibration oils available from the manufacturer. No precision has been determined at this temperature. The equipment is also used at higher temperatures as shown in Test Method D4683 and CEC L-36-90 (also referenced from IP 370).1.1 This test method covers the laboratory determination of the viscosity of engine oils at 100 °C and 1·106s–1 using the Tapered Bearing Simulator (TBS) viscometer.2NOTE 1: This test method is similar to Test Method D4683 which uses the same TBS viscometer to measure high shear viscosity at 150 °C.1.2 The Newtonian calibration oils used to establish this test method range from approximately 5 mPa·s (cP) to 12 mPa·s (cP) at 100 °C and either the manual or automated protocol was used by each participant in developing the precision statement. The viscosity range of the test method at this temperature is from 1 mPa·s (cP) to above 25 mPa·s (cP), depending on the model of TBS.1.3 The non-Newtonian reference oil used to establish the shear rate of 1·106s–1 for this test method has a viscosity of approximately 10 mPa·s at 100 °C.1.4 Application to petroleum products other than engine oil has not been determined in preparing the viscometric information for this test method.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. This test method uses the milliPascal second (mPa·s) as the unit of viscosity. This unit is equivalent to the centiPoise (cP), which is shown in parentheses.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and to determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Flexure tests on flat sandwich panel construction may be conducted to determine facesheet scarf or step joint compressive strength.5.2 This practice is limited to obtaining the compressive strength of the sandwich panel scarf and step joint facesheets. Due to the curvature of the flexural test specimen when loaded, facesheet compression strength from this test may not be equivalent to the facesheet compression strength of sandwich structures subjected to pure edgewise (in-plane) compression.5.3 Factors that influence the compressive response and should therefore be reported include the following: materials (laminate facesheet, core, and adhesive); methods of material fabrication; methods of material preparation, including surface preparation prior to bonding, lay-up, specimen facesheet stacking sequence, and overall thickness; core geometry (cell size); core density; adhesive thickness; joint taper ratio or step length; ply overlap length; relative thickness and stiffness of parent and repair laminates; adhesive bond stiffness; specimen preparation; specimen conditioning; environment of testing; specimen alignment; speed of testing; time at temperature; void content; and volume percent reinforcement. Properties, in the test direction, which may be obtained from this practice, include the following:5.3.1 Ultimate compressive strength (based on the nominal repair material thickness), (Frcu).5.3.2 Ultimate running load per ply, (Nj).NOTE 2: Concentrated forces on beams with thin facesheets and low density cores can produce results that are difficult to interpret, especially close to the failure point. Wider loading blocks and rubber pads may assist in distributing the forces.NOTE 3: To ensure that simple sandwich beam theory is valid, a good rule of thumb for the four-point bending test is the support span length divided by the sandwich thickness should be greater than 20 (S/d > 20) with the ratio of repair material facesheet thickness to core thickness less than 0.1 (hr/c < 0.1).1.1 This practice covers the procedure for determination of the compressive strength of a tapered or stepped bonded joint of polymer matrix composite materials. It is applicable to secondary bonded or co-bonded laminates with either unidirectional plies or woven fabric reinforcements. The materials to be bonded may be different systems. In the bondline, a separate adhesive material may or may not be used (example: adhesives may be used with a prepreg system or may not be used with a wet lay-up repair system). The range of acceptable test laminates and thicknesses are described in 8.2.7. The standard repair types are the same as for the tensile loading in Practice D8131/D8131M. While external patch repairs are not explicitly covered in this practice, these repairs could be tested as a non-standard specimen using this practice.1.2 This practice supplements Test Method D7249/D7249M for compressive loading of facesheet sandwich constructions by long beam flexure. Several important test specimen parameters (for example, joint length, ply overlaps, step depth, and taper ratio) are not mandated by this practice; however, these parameters are required to be specified and reported to support repeatable results.1.3 Unidirectional (0° ply orientation) composites as well as multi-directional composite laminates and fabric composites, can be tested.1.4 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.4.1 Within the text, the inch-pound units are shown in brackets.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers spun cast prestressed concrete bases used in tapered steel lighting poles. It provides requirements for acceptability of spun prestressed concrete bases produced in accordance with this specification, materials, bending test procedures, tolerances, and drawings. The requirements also cover inspection with respect to the quality of materials, the process of manufacture, and the finished bases.1.1 This specification covers spun cast prestressed concrete bases used in lighting structures.1.2 Units—The values stated in SI units are to be regarded as standard.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method is intended to provide the user with acceptable apparatus requirements and a prescribed procedure to determine the bending moment capacity of spun pre-stressed concrete bases for use with tapered steel poles.5.2 The results of this test method are used as a basis for verification of calculated bending moment capacity, quality control tool for manufacturing process and as a basis for determining statistical bending moment capacity.5.3 This test method shall not be used for full length prestressed concrete, steel, or composite poles.1.1 This test method covers determination of ultimate bending moment capacity and cracking moment capacity of concrete bases used as foundations for tapered steel lighting poles in accordance to Specification C1804.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Solvent cement bonder/installers shall follow all procedures to produce consistently strong and leak-free joints, either in shop operations or in the field.1.1 This practice describes a one-step (solvent cement only) method of joining pipe to fittings (and or piping components) that employ tapered sockets that provide an interference fit 1/3 to 2/3 ’s of the socket depth. This practice applies to poly(vinyl chloride) (PVC), or chlorinated poly(vinyl chloride) (CPVC).1.2 This practice shall only be used with products (pipe, fitting, fitting component and solvent cement) where manufacturer’s literature and local codes reference this ASTM standard practice: ASTM F3328.NOTE 1: Where conflicts occur between the code and the manufacturer’s installation instructions, the more restrictive provisions apply.1.3 Due to inherent hazards associated with testing components and systems with compressed air or other compressed gases, some manufacturers do not allow pneumatic testing of their products. Consult with specific product/component manufacturers for their specific testing procedures prior to pneumatic testing.NOTE 2: Pressurized (compressed) air or other compressed gases contain large amounts of stored energy which present serious safety hazards should a system fail for any reason.1.4 Techniques covered are applicable to joining PVC to PVC, or CPVC to CPVC pipe and piping components with tapered sockets. In the remainder of this standard practice, the term “piping components with tapered sockets”, whether it be bell end pipe, spigot connections, or any other type of tapered connections, will be referred to as “fittings.”1.5 Text of this practice references notes and footnotes that provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the practice.1.6 Units—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers three grades of seam-welded, round, tapered steel tubes for structural use. Grades A and B are of low-carbon steel or high-strength low-alloy steel composition and Grade C is of weather-resistance steel composition. The tube steel shall be hot-rolled aluminum-semikilled or fine-grained killed sheet or plate manufactured by one or more of the following processes: open-hearth, basic-oxygen, or electric-furnace. The tubes shall be made from trapezoidal sheet or plate that is preformed and then seam welded. They shall be brought to final size and properties by roll compressing cold on a hardened mandrel. A tensile test shall be done to determine the yield strength and the ultimate tensile strength of the tubes.1.1 This specification covers three grades of seam-welded, round, tapered steel tubes for structural use. Grades A and B are of low-carbon steel or high-strength low-alloy steel composition and Grade C is of weather-resistant steel composition.1.1.1 The product may be modified from its round cross section into other shapes without subsequent retesting.1.2 This tubing is produced in welded sizes in a range of diameters from 2 3/8 to 30 in. [60 to 762 mm] inclusive. Wall thicknesses range from 0.1046 to 0.375 in. [2.66 to 9.53 mm]. Tapers are subject to agreement with the manufacturer.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
12 条记录,每页 15 条,当前第 1 / 1 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页