微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 The test method is designed to predict the deposit-forming tendencies of engine oil in the piston ring belt and upper piston crown area. Correlation has been shown between the TEOST MHT procedure and the TU3MH Peugeot engine test in deposit formation. Such deposits formed in the ring-belt area of a reciprocating engine piston can cause problems with engine operation and longevity. It is one of the required test methods in Specification D4485 to define API Category-Identified engine oils.61.1 This test method covers the procedure to determine the mass of deposit formed on a specially constructed test rod exposed to repetitive passage of 8.5 g of engine oil over the rod in a thin film under oxidative and catalytic conditions at 285 °C. The range of applicability of the Moderately High Temperature Thermo-Oxidation Engine Test (TEOST MHT2) test method as derived from an interlaboratory study is approximately 10 mg to 100 mg. However, experience indicates that deposit values from 1 mg to 150 mg or greater may be obtained.1.2 This test method uses a patented instrument, method and patented, numbered, and registered depositor rods traceable to the manufacturer3 and made specifically for the practice and precision of the test method.41.3 The values stated in SI units are to be regarded as standard.1.3.1 Although not an SI unit, the special name liter (L) is allowed by SI for the cubic decimeter (dm3) and the milliliter (mL) for the SI cubic centimeter (cm3). Likewise, the special name millimeter (mm) is allowed by SI as a measurement of length.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 The test method is designed to predict the high temperature deposit forming tendencies of an engine oil subject to the added oxidizing stress of a turbocharger. This test method can be used to screen oil samples or as a quality assurance tool.1.1 This test method covers the procedure to determine the amount of deposits formed by automotive engine oils utilizing the thermo-oxidation engine oil simulation test (TEOST2).3 An interlaboratory study (see Section 17) has determined it to be applicable over the range from 10 mg to 65 mg total deposits.NOTE 1: Operational experience with the test method has shown the test method to be applicable to engine oils having deposits over the range from 2 mg to 180 mg total deposits.1.2 The values stated in SI units are to be regarded as standard.1.2.1 Milligrams (mg), grams (g), milliliters (mL), and liters are the units provided, because they are an industry accepted standard.1.2.2 Exception—Pounds per square inch gauge (psig) is provided for information only in 6.2.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This specification covers the general requirements for protective zinc coatings (hereinafter referred to as the coatings) to be applied by the thermo-diffusion coating (TDC) method, to various products made of carbon steel, including low and high tensile parts as well as of wrought iron, iron and steel castings, sintered iron steel-powder, and various steel and stainless alloys. TDC is a dry coating process carried out by immersing the parts in a zinc or zinc alloy powder at elevated temperature for a period of time, causing a metallurgical diffusion process of zinc and iron. Further processing may be added, such as passivation, topcoat application, paint application, etc.1.2 This specification is applicable to orders in either inch-pound units (as A1059) or in SI units (as A1059M). Inch-pound units and SI units are not necessarily exact equivalents. Within the text of this specification and where appropriate, SI units are shown in brackets. Each system shall be used independently of the other without combining values in any way. In the case of orders in SI units, all testing and inspection shall be done using the metric equivalent of the test or inspection method as appropriate. In the case of orders in inch-pound units, such shall be stated to the applicator when the order is placed.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This practice is intended to aid fabricators, suppliers, purchasers, and users of fabricated panels in the testing requirements for factory-created seams during fabrication of geomembrane panels.4.2 Factory seaming of geomembranes has advantages over field seaming including less temperature variation, no wind, fewer contamination (soil and water) concerns, a consistent work surface for welding, and options for factory equipment that may not be robust enough for the field environment. This results in factory welds more consistent than field seams and allows for a lesser frequency of testing than for field seams.4.3 This guide is not intended to replace project-specific seaming and testing requirements or quality assurance programs.1.1 This practice provides manufacturing quality control guidance for the factory seaming of fabricated geomembrane panels. This practice is not to be considered as all-encompassing since there are a large number of geomembrane types, weld types, and fabrication processes that cannot be anticipated and covered in this document.1.2 This practice is written for factory-fabricated geomembrane panels only and does not apply to field fabrication onsite.1.3 This practice does not cover joining of materials during the primary geomembrane manufacturing process such as the vulcanized overlaps found in EPDM sheet.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers high-strength low-alloy structural steel plates that were produced by the thermo-mechanical controlled process (TMCP). This method consists of rolling reductions and cooling rate controls, which result in mechanical properties in the finished plate that are equivalent to those attained using conventional rolling and heat treatment processes.1.1 This specification covers steel plates produced by the thermo-mechanical controlled process (TMCP). Five grades are defined by the yield strength: 50 [345], 60 [415], 65 [450], 70 [485], and 80 [550]. The plates are intended primarily for use in welded steel structures.1.2 The TMCP method consists of rolling reductions and cooling rate controls that result in mechanical properties in the finished plate that are equivalent to those attained using conventional rolling and heat treatment processes, which entail reheating after rolling. A description of the TMCP method is given in Appendix X1.1.3 The maximum thicknesses available in the grades covered by this specification are shown in Table 1.1.4 Due to the special combination of mechanical and thermal treatment inducing lower rolling temperatures than for conventional hot rolling the plates cannot be formed at elevated temperatures without sustaining significant losses in strength and toughness. The plates may be formed and post-weld heat-treated at temperatures not exceeding 1050°F [560°C]. Higher temperatures may be possible if proven that minimum mechanical characteristics are retained after tests with specimens in the post-weld heat treatment (PWHT) condition. For flame straightening higher temperatures can be used in accordance with the steel manufacturer’s recommendations.1.5 If the steel is to be welded, a welding procedure suitable for the grade of steel and intended use or service is to be utilized. See Appendix X3 of Specification A6/A6M for information on weldability.1.6 Supplementary requirements are available but shall apply only if specified in the purchase order.1.7 Units—This specification is expressed in both inch-pound units and SI units; however, unless the purchase order or contract specifies the applicable M specification designation (SI units), the inch-pound units shall apply. The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system is to be used independently of the other. Combining values from the two systems may result in nonconformances with the standard.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 The use of geomembranes as barrier materials to restrict liquid migration from one location to another in soil and rock has created a need for a standard test method to evaluate the quality of geomembrane seams produced by thermo-fusion methods. In the case of geomembranes, it has become evident that geomembrane seams can exhibit separation in the field under certain conditions. Although this is an index-type test method used for quality assurance and quality control purposes, it is also intended to provide the quality assurance engineer with sufficient seam peel and shear data to evaluate seam quality. Recording and reporting data, such as separation that occurs during the peel test and elongation during the shear test, will allow the quality assurance engineer to take measures necessary to ensure the repair of inferior seams during facility construction, and therefore, minimize the potential for seam separation in service.1.1 This test method describes destructive quality control and quality assurance tests used to determine the integrity of geomembrane seams produced by thermo-fusion methods. This test method presents the procedures used for determining the quality of nonbituminous bonded seams subjected to both peel and shear tests. These test procedures are intended for nonreinforced geomembranes only.1.2 The types of thermal field seaming techniques used to construct geomembrane seams include the following:1.2.1 Hot Air—This technique introduces high-temperature air or gas between two geomembrane surfaces to facilitate melting. Pressure is applied to the top or bottom geomembrane, forcing together the two surfaces to form a continuous bond.1.2.2 Hot Wedge (or Knife)—This technique melts the two geomembrane surfaces to be seamed by running a hot metal wedge between them. Pressure is applied to the top or bottom geomembrane, or both, to form a continuous bond. Some seams of this kind are made with dual bond tracks separated by a nonbonded gap. These seams are sometimes referred to as dual hot wedge seams or double-track seams.1.2.3 Extrusion—This technique encompasses extruding molten resin between two geomembranes or at the edge of two overlapped geomembranes to effect a continuous bond.1.3 The types of materials covered by this test method include the following:1.3.1 Very low-density polyethylene (VLDPE).1.3.2 Linear low-density polyethylene (LLDPE).1.3.3 Very flexible polyethylene (VFPE).1.3.4 Linear medium-density polyethylene (LMDPE).1.3.5 High-density polyethylene (HDPE).1.3.6 Polyvinyl chloride (PVC).1.3.7 Flexible polypropylene (fPP).NOTE 1: The polyethylene identifiers presented in 1.3.1 – 1.3.5 describe the types of materials typically tested using this test method. These are industry-accepted trade descriptions and are not technical material classifications based upon material density.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The use of reinforced geomembranes as barrier materials has created a need for a standard test method to evaluate the quality of seams produced by thermo-fusion methods. This test method is used for quality control purposes and is intended to provide quality control and quality assurance personnel with data to evaluate seam quality.4.2 This standard arose from the need for a destructive test method for evaluating seams of reinforced geomembranes. Standards written for destructive testing of nonreinforced geomembranes do not include all break codes (Fig. 1) applicable to reinforced geomembranes.FIG. 1 Break Codes for Dual Hot Wedge and Hot Air Seams of Reinforced Geomembranes Tested for Seam Strength in Shear and Peel Modes4.3 When reinforcement occurs in directions other than machine and cross-machine, scrim are cut at specimen edges, generally lowering results. To partially compensate for this, testing can be performed according to Test Method D7749 or the 2 in. wide strip specimen specified in this method can be utilized. Testing of 1 in. and 2 in. specimens is Method A and Method B, respectively.4.4 The shear test outlined in this method correlates to strength of parent material measured according to Test Method D7003/D7003M only if reinforcement is parallel to TD. For other materials, seam strength and parent material strength can be compared through Test Methods D7749 and D7004/D7004M. Values obtained with the strip methods shall not be compared to values obtained with grab methods.1.1 This test method describes destructive quality control tests used to determine the integrity of thermo-fusion seams made with reinforced geomembranes. Test procedures are described for seam tests for peel and shear properties using strip specimens.1.2 The types of thermal field and factory seaming techniques used to construct geomembrane seams include the following:1.2.1 Hot Air—This technique introduces high-temperature air between two geomembrane surfaces to facilitate melting. Pressure is applied to the top or bottom geomembrane, forcing together the two surfaces to form a continuous bond.1.2.2 Hot Wedge—This technique melts the two geomembrane surfaces to be seamed by running a hot metal wedge between them. Pressure is applied to the top and bottom geomembrane to form a continuous bond. Some seams of this kind are made with dual tracks separated by a non-bonded gap. These seams are sometimes referred to as dual hot wedge seams or double-track seams.1.2.3 Extrusion—This technique encompasses extruding molten resin between two geomembranes or at the edge of two overlapped geomembranes to effect a continuous bond.1.2.4 Radio Frequency (RF) or Dielectric—High-frequency dielectric equipment is used to generate heat and pressure to form an overlap seam in factory fabrication.1.2.5 Impulse—Clamping bars heated by wires or a ribbon melt the sheets clamped between them. A cooling period while still clamped allows the polymer to solidify before being released.1.3 The types of materials covered by this test method include, but are not limited to, reinforced geomembranes made from the following polymers:1.3.1 Very low-density polyethylene (VLDPE).1.3.2 Linear low-density polyethylene (LLDPE).1.3.3 Flexible polypropylene (fPP).1.3.4 Polyvinyl chloride (PVC).1.3.5 Chlorosulfonated polyethylene (CSPE).1.3.6 Ethylene interpolymer alloy (EIA).1.4 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The use of reinforced geomembranes as barrier materials has created a need for a standard test method to evaluate the quality of seams produced by thermo-fusion methods. This test method is used for quality control purposes and is intended to provide quality control and quality assurance personnel with data to evaluate seam quality.4.2 Values obtained with this method can be correlated to Test Method D7004/D7004M. The purpose of correlating these methods was for the strength of parent material measured in Test Method D7004/D7004M to be comparable to seam strength measured by the test outlined here. The value obtained with this method cannot be compared to values for strip method, Test Method D7003/D7003M, for parent material or Test Method D7747/D7747M, strip method for reinforced seams.1.1 This test method describes destructive quality control tests used to determine the integrity of thermo-fusion seams made with reinforced geomembranes. A test procedure is described that uses seam tests using grab specimens for seam shear strength.1.2 The types of thermal field and factory seaming techniques used to construct geomembrane seams include the following:1.2.1 Hot Air—This technique introduces high-temperature air between two geomembrane surfaces to facilitate melting. Pressure is applied to the top or bottom geomembrane, forcing together the two surfaces to form a continuous bond.1.2.2 Hot Wedge—This technique melts the two geomembrane surfaces to be seamed by running a hot metal wedge between them. Pressure is applied to the top and bottom geomembrane to form a continuous bond. Some seams of this kind are made with dual tracks separated by a non-bonded gap. These seams are sometimes referred to as dual hot wedge seams or double-track seams.1.2.3 Extrusion—This technique encompasses extruding molten resin between two geomembranes or at the edge of two overlapped geomembranes to effect a continuous bond.1.2.4 Radio Frequency (RF) or Dielectric—High-frequency dielectric equipment is used to generate heat and pressure to form an overlap seam in factory fabrication.1.2.5 Impulse—Clamping bars heated by wires or a ribbon melt the sheets clamped between them. A cooling period while still clamped allows the polymer to solidify before being released.1.3 The types of materials covered by this test method include, but are not limited to, reinforced geomembranes made from the following polymers:1.3.1 Very low-density polyethylene (VLDPE).1.3.2 Linear low-density polyethylene (LLDPE).1.3.3 Flexible polypropylene (fPP).1.3.4 Polyvinyl chloride (PVC).1.3.5 Chlorosulfonated polyethylene (CSPE).1.3.6 Ethylene interpolymer alloy (EIA).1.4 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers steel plates produced by the thermo-mechanical control process (TMCP). The plates are intended primarily for use in welded pressure vessels. The steel shall be killed and shall conform to specified fine austenitic grain size and chemical composition requirements. If the plates are to be subjected to warm forming or post-weld heat treatment, the test coupons shall be subjected to heat treatment to simulate such fabrication operations. The tension test and notch toughness test requirements are presented in details. Two tension tests shall be made from each plate-as-rolled. One test coupon shall be taken from a corner of the plate on each end.1.1 This specification2 covers steel plates produced by the thermo-mechanical control process (TMCP). The plates are intended primarily for use in welded pressure vessels. A description of the TMCP method is given in Appendix X1.1.2 Due to the inherent characteristics of the TMCP method, the plates cannot be formed at elevated temperatures without sustaining significant losses in strength and toughness. Except for Grade G, the plates may be formed and post-weld heat-treated at temperatures not exceeding 1200°F [650°C], providing the requirements of 6.1 are met. Grade G plates may be formed at temperatures not exceeding 985°F [530°C] provided the requirements of 6.1 are met.1.3 The maximum permitted nominal thickness of plates furnished to this specification is 4 in. [100 mm] for Grades A, B, and C; 1.5 in. [40 mm] for Grades D,3 E, and F; and 2 in. [50 mm] for Grade G.1.4 Grade G is susceptible to magnetization. Use of magnets in handling after heat treatment should be avoided if residual magnetism would be detrimental to subsequent fabrication or service.1.5 The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system are not exact equivalents. Therefore, each system must be used independently of the other. Combining values from the two systems may result in nonconformance with this specification.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
9 条记录,每页 15 条,当前第 1 / 1 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页