微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

3.1 Relative molecular mass (molecular weight) is a fundamental physical constant that can be used in conjunction with other physical properties to characterize pure hydrocarbons and their mixtures.3.2 A knowledge of the relative molecular mass (molecular weight) is required for the application of a number of correlative methods that are useful in determining the gross composition of the heavier fractions of petroleum.1.1 This test method covers the determination of the average relative molecular mass (molecular weight) of hydrocarbon oils. It can be applied to petroleum fractions with molecular weights (relative molecular mass) up to 3000; however, the precision of this test method has not been established above 800 molecular weight (relative molecular mass). This test method should not be applied to oils having initial boiling points lower than 220 °C.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, 5.2.1, 5.2.3, and 5.2.3.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 The purpose of this method is to determine the suitability of different metals for use in resistance apparatus in which a low thermoelectric power is desired. As most electric circuits are largely composed of copper, the thermoelectric power of a resistance metal will generally be measured against copper.1.1 This test method covers the determination of the thermoelectric power of a metal or alloy with respect to copper when the temperatures of the junctions lie between 0 and 100°C.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Safety Data Sheet (SDS) for this product/material as provided by the manufacturer, to establish appropriate safety, health, and environmental practices, and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This practice covers the procedure for sorting electrically conductive materials using the thermoelectric method, which is based on the seebeck effect. The procedure relates to the use of direct- and comparator-type thermoelectric instruments for distinguishing variations in materials which affect the thermoelectric properties of those materials. The two techniques that are primarily used in thermoelectric sorting are direct and comparative instrumentation. In the direct instruments, equipment is standardized by placing materials with known chemistry and metallurgical structure in the test system. In the comparative instruments, the thermoelectric response of the test piece is compared with that of a known standard(s) and the response indicates whether the piece is within the acceptance limits. The electronic apparatus shall be capable of maintaining a sufficient temperature differential across the electrodes to produce a suitable thermoelectric voltage. The different procedures for sorting electrically conductive materials are presented in details.1.1 This practice covers the procedure for sorting materials using the thermoelectric method, which is based on the Seebeck effect. The procedure relates to the use of direct- and comparator-type thermoelectric instruments for distinguishing variations in materials which affect the thermoelectric properties of those materials.1.2 While the practice is most commonly applied to the sorting of metals, it may be applied to other electrically conductive materials.1.3 Thermoelectric sorting may also be applied to the sorting of materials on the basis of plating thickness, case depth, and hardness.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
4 条记录,每页 10 条,当前第 1 / 1 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页