微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 819元 / 折扣价: 697 加购物车

在线阅读 收 藏
ASTM D1198-93(1998) Standard Test Method for Solvent Tolerance of Amine Resins (Withdrawn 2007) Withdrawn, No replacement 发布日期 :  1970-01-01 实施日期 : 

1.1 This test method covers the determination of the quantity of hydrocarbon solvent that an amine resin will tolerate at 77°F (25°C).1.2 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.>

定价: 0元 / 折扣价: 0

在线阅读 收 藏

1.1 This standard describes a test method for evaluating the ignition sensitivity and fault tolerance of oxygen regulators used for medical and emergency applications.1.2 For the purpose of this standard, a pressure regulator is a device, also called a pressure-reducing valve, that is intended for medical or emergency purposes and that is used to convert a medical or emergency gas pressure from a high, variable pressure to a lower, more constant working pressure [21 CFR 868.2700 (a)].1.3 This standard applies only to oxygen regulators used for medical and emergency applications that are designed and fitted with CGA 870 pin-index adapters and CGA 540 inlet connections (CGA V-1).Note 1--Although this standard applies only to oxygen regulators used for medical or emergency applications, it may also apply to other types of oxygen regulators outside of this scope, at the discretion of the authority having jurisdiction.1.4 This standard provides an evaluation tool for determining the fault tolerance of oxygen regulators used for medical and emergency applications. A fault tolerant regulator is defined as 1) having a low probability of ignition as evaluated by rapid pressurization testing and 2) having a low consequence of ignition as evaluated by forced ignition testing.1.5 This standard is not a design standard; however, it can be used to aid designers in designing and evaluating the safe performance and fault tolerance capability of oxygen regulators used for medical and emergency applications (G 128).Note 2--It is essential that a risk assessment be carried out on breathing gas systems, especially concerning oxygen compatibility (refer to ASTM G 63 and G 94) and toxic product formation due to ignition or decomposition of nonmetallic materials as weighed against the risk of flammability (refer to ISO 15001.2). See Appendix X1 and Appendix X2.1 for details.1.6 This standard is also used to aid those responsible for purchasing or using oxygen regulators used for medical and emergency applications in ensuring that selected regulators are tolerant of the ignition mechanisms that are normally active in oxygen systems.1.7 This standard does not purport to address the ignition sensitivity and fault tolerance of an oxygen regulator caused by contamination during field maintenance. Regulator designers and manufacturers should provide design safeguards to minimize the potential for contamination or its consequences (G 88).1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This specification defines the dimensional tolerances of standard rods, bars, and shapes pultruded from thermosetting glass-reinforced plastics. Tolerances cover dimensional criteria for cross sections, width or diameter, straightness, twist, surface flatness, angularity, and camber.1.1 This specification defines production tolerances applicable to standard rods, bars, shapes, and flat sheet pultruded from thermosetting glass-reinforced plastics.1.2 These dimensional tolerances apply to all shapes specified as “standard” by the pultrusion industry.1.3 Custom shapes and products designed for special applications may carry specific tolerances that vary from the standard.1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 The following safety hazards caveat pertains only to the test methods portion, Section 5, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: There is no known ISO equivalent to this standard.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The indirect tensile cracking test is used to determine asphalt mixture cracking resistance at an intermediate temperature which could range from 5 °C to 35 °C, depending on local climate. The specimens are readily obtained from Superpave gyratory compactor compacted cylinders with a diameter of 150 ± 2 mm, with no cutting, gluing, notching, drilling, or instrumentation required. Similarly, field cores can be tested to measure remaining cracking resistance of in-place asphalt mixtures.5.2 The CTIndex of an asphalt mixture is calculated from the failure energy, the post-peak slope of the load-displacement curve, and deformation tolerance at 75 % of the peak load. The CTIndex is a performance indicator of the cracking resistance of asphalt mixtures containing various asphalt binders, asphalt binder modifiers, aggregate blends, fibers, and recycled materials. Generally, the higher the CTIndex value, the better the cracking resistance and, consequently, the less the cracking amount in the field. The range for an acceptable CTIndex will vary with mix types and associated specific applications.4 Users can employ the CTIndex and associated criteria to identify crack-prone mixtures during mix design and production quality control/assurance.NOTE 1: The quality of the results produced by this standard are dependent on the competence of the personnel performing the procedure and the capability, calibration, and maintenance of the equipment used. Agencies that meet the criteria of Specification D3666 are generally considered capable of competent and objective testing, sampling, inspection, etc. Users of this standard are cautioned that compliance with Specification D3666 alone does not completely ensure reliable results. Reliable results depend on many factors; following the suggestions of Specification D3666 or some similar acceptable guideline provides a means of evaluating and controlling some of those factors.1.1 This test method covers the procedures for preparing, testing, and measuring asphalt mixture cracking resistance using cylindrical laboratory-prepared asphalt mix samples or pavement cores. Testing temperatures are selected from the long-term pavement performance (LTPP) database intermediate temperatures. The test method describes the determination of the cracking tolerance index, CTIndex, and other parameters determined from the load-displacement curve. These parameters can be used to evaluate the resistance of asphalt mixtures to cracking.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This practice is for use by engineers, regulatory agencies, owners, and inspection organizations who are involved in the removal and replacement of AC pipes through the use of a method that is in compliance with the rules for removing and replacing AC pipe in accordance with NESHAP and OSHA requirements governing the handling, removal, and disposal of any ACM.1.1 This practice covers the requirements and test methods of an EPA-approved alternative work practice (AWP) for the replacing of an Asbestos Cement (AC) pipe by the Close Tolerance Pipe Slurrification Method in accordance with said EPA CTPS AWP issued on June 10, 2019. This process utilizes a patented method (US 10,557,587 B2)2 and other specially designed tools designed to work with the EPA regulations surrounding AC pipe work. Specifically, the special (patented) back reaming tool (US 8,365,841 B2)2 delivers the required bentonite-based fluid to maintain a wet cutting environment which is an important requirement for cutting Asbestos Cement Material (ACM). The sizing of the cutting head is set at 0.25 in. in diameter greater than the replacement pipe's outside diameter to facilitate the removal of the ACM. This close tolerance sizing creates a scenario where the new pipe, along with the injection of the drill fluid, will allow the slurry to flow and subsequently expel at pre-determined pit locations. The slurry containing the ACM is then removed from the site and properly disposed of. Any remaining trace amounts of asbestos fiber in the ground are encapsulated in a skim coat of the slurry remaining around the new pipe, the skim coat having the consistency of a lightweight concrete material commonly known as excavatable flowable fill.1.2 Units—The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This test method comprises two phases and is used to evaluate the ignition sensitivity and fault tolerance of oxygen pressure regulators used for medical and emergency applications.4.2 Phase 1: Oxygen Pressure Shock Test—The objective of this test phase is to determine whether the heat or temperature from oxygen pressure shocks will result in burnout or visible heat damage to the internal parts of the pressure regulator.4.2.1 The criteria for a valid test are specified in ISO 10524–1, Section 6.6 for oxygen pressure regulators and ISO 10524–3, Section 6.6 for oxygen VIPRs.4.2.2 The pass/fail criteria for a pressure regulator are specified in ISO 10524–1, Section 6.6 for oxygen pressure regulators and ISO 10524–3, Section 6.6 for oxygen VIPRs.4.3 Phase 2: Promoted Ignition Test—4.3.1 Oxygen Pressure Regulator—The objective of this test phase is to determine if an ignition event upstream of the pressure regulator inlet filter will result in sustained combustion and burnout of the pressure regulator.4.3.1.1 The criterion for a valid test is either, (1) failure of the pressure regulator, as defined in 4.3.1.2, or (2) if the pressure regulator does not fail, consumption of at least 90 % of the ignition pill as determined by visual inspection or mass determination.4.3.1.2 Failure of the pressure regulator is defined as the breach of the pressurized regulator component (burnout), which may include the CGA 870 seal ring, and ejection of molten or burning metal or any parts, including the gauge, from the pressure regulator. See Appendix X6 Testing Pressure Regulators and VIPRs with Gauges. However, momentary (less than 1 s) ejection of flame through normal vent paths, with sparks that look similar to those from metal applied to a grinding wheel, is acceptable and does not constitute a failure.4.3.2 Oxygen VIPR—The objective of this test is to determine if an ignition event upstream of the shut-off valve or within the shut-off valve will result in sustained combustion and burnout of the VIPR, while the VIPR is flowing oxygen in the patient-use direction.4.3.2.1 The criterion for a valid test is either, (1) failure of the VIPR as defined in 4.3.2.2, or (2) if the VIPR does not fail, consumption of at least 90 % of the ignition pill as determined by visual inspection or mass determination. Although the intent and desired result is to provide sufficient energy to ignite the shut-off valve seat, ignition of the shut-off valve seat is not required for a valid test. See Rationale in Appendix X7.4.3.2.2 Failure of the VIPR is defined as the breach of the pressurized VIPR component (burnout) and ejection of molten or burning metal or any parts, including the gauge, from the VIPR. See Appendix X6 Testing Pressure Regulators and VIPRs with Gauges. However, momentary (less than 1 s) ejection of flame through normal vent paths, with sparks that look similar to those from metal applied to a grinding wheel, is acceptable and does not constitute a failure.4.3.3 There is no requirement that the oxygen pressure regulator or oxygen VIPR be functional after being subjected to the promoted ignition test.NOTE 4: The criterion for both the pressure regulator and VIPR Phase 2 tests does not include evaluation of external hardware (such as plastic guards and bags) that could be subjected to a momentary ejection of flame through normal vent paths.1.1 For the purpose of this standard, a pressure regulator, also called a pressure-reducing valve, is a device intended for medical or emergency purposes that is used to convert a medical or emergency gas pressure from a high, variable pressure to a lower, more constant working pressure [21 CFR 868.2700 (a)]. Some of these oxygen pressure regulators are a combination of a pressure regulator and cylinder valve. These devices are often referred to as valve integrated pressure regulators, or VIPRs.1.2 This standard provides an evaluation tool for determining the ignition sensitivity and fault tolerance of oxygen pressure regulators and VIPRs used for medical and emergency applications. An ignition-sensitive pressure regulator or VIPR is defined as having a high probability of ignition as evaluated by rapid pressurization testing (Phase 1). A fault-tolerant pressure regulator or VIPR is defined as having a low consequence of ignition as evaluated by forced ignition testing (Phase 2).NOTE 1: It is essential that a risk assessment be carried out on breathing gas systems, especially concerning toxic product formation due to ignition or decomposition of nonmetallic materials as weighed against the risk of flammability (refer to Guide G63 and ISO 15001.2). See Appendix X1 and Appendix X2 for details.1.3 This standard applies only to:1.3.1 Oxygen pressure regulators used for medical and emergency applications that are designed and fitted with CGA 540 inlet connections, CGA 870 pin-index adapters (CGA V-1), or EN ISO 407 pin-index adapters.1.3.2 Oxygen VIPRs used for medical and emergency applications that are designed to be permanently fitted to a medical gas cylinder.1.4 This standard is a test standard not a design standard; This test standard is not intended as a substitute for traditional design requirements for oxygen cylinder valves, pressure regulators and VIPRs. A well-designed pressure regulator or VIPR should consider the practices and materials in standards such as Guides G63, G88, G94, and G128, Practice G93, CGA E-18, CGA E-7, ISO 15001, ISO 10524-1 and ISO 10524-3.NOTE 2: Medical applications include, but are not limited to, oxygen gas delivery in hospitals and home healthcare, and emergency applications including, but not limited to, oxygen gas delivery by emergency personnel.1.5 This standard is also intended to aid those responsible for purchasing or using oxygen pressure regulators and VIPRs used for medical and emergency applications by ensuring that selected pressure regulators are tolerant of the ignition mechanisms that are normally active in oxygen systems.1.6 This standard does not purport to address the ignition sensitivity and fault tolerance of an oxygen regulator or VIPR caused by contamination during field maintenance or use. Pressure regulator and VIPR designers and manufacturers should provide design safeguards to minimize the potential for contamination or its consequences (see Guide G88).NOTE 3: Experience has shown that the use of bi-direction flow filters in components can lead to accumulation and re-release of contaminants (refer to Guide G88-05 Section 7.5.3.8 and EIGA Info 21/08).1.7 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

1.1 This test method covers the ability of gasoline-alcohol blends to retain water in solution or in a stable suspension at the lowest temperature to which they are likely to be stored or exposed in use.1.2 This test method is intended to measure the temperature at which a gasoline-alcohol blend separates into two distinct phases in accordance with the criteria defined in this test method. Samples that form a haze are considered not to have phase separated.1.3 This test method is applicable to gasoline-alcohol blends for use as fuels in spark-ignition engines that contain saturated C1 to C4 alcohols only. The test method does not apply to fuels that contain an alcohol as the primary component, such as M85 or Ed85, or to gasoline-ether blends.1.4 The values stated in SI units are the standard, except when other units are specified by federal regulation. Values given in parentheses are provided for informational purposes.1.5 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 The ideal rutting test (IRT) is used to determine asphalt mixture rutting resistance at high temperature in the range of 50 ± 15 °C, depending on local climate. The specimens are readily obtained from Superpave Gyratory Compactor (SGC) compacted cylinders with a diameter of 150 ± 2 mm, with no cutting, gluing, drilling, or instrumentation required. Similarly, field cores with a diameter of 150 ± 2 mm can be tested to measure rutting resistance of in-place asphalt mixtures.NOTE 1: Field cores may need cutting to a right thickness ranging from 38 mm to 95 mm. This test standard is not applicable to the specimens with a diameter other than 150 ± 2 mm, regardless of laboratory-compacted specimens or field cores.5.2 The RTIndex of an asphalt mixture is calculated from the peak load (or shear strength). The RTIndex is a performance indicator of the rutting resistance of asphalt mixtures containing various asphalt binders, asphalt binder modifiers and additives, aggregate blends, fibers, and recycled materials. Generally, the higher the RTIndex value, the better the rutting resistance and consequently the smaller the rut depth in the field. Users can employ the RTIndex and associated criteria to identify rutting-prone mixtures during mix design and production quality control/assurance.NOTE 2: The quality of the results produced by this standard are dependent on the competence of the personnel performing the procedure and the capability, calibration, and maintenance of the equipment used. Agencies that meet the criteria of Specification D3666 are generally considered capable of competent and objective testing, sampling, inspection, etc. Users of this standard are cautioned that compliance with Specification D3666 alone does not completely ensure reliable results. Reliable results depend on many factors; following the suggestions of Specification D3666 or some similar acceptable guideline provides a means of evaluating and controlling some of those factors.1.1 This test method covers the procedures for preparing, testing, and measuring asphalt mixture rutting resistance at high temperatures using cylindrical laboratory-prepared asphalt mix samples or pavement cores. The test method describes the determination of the rutting tolerance index, RTIndex, and other parameters determined from the load-displacement curve. These parameters can be used to evaluate the resistance of asphalt mixtures to rutting.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.4 The within-laboratory repeatability standard deviation of rutting tolerance index has been determined to be 2.42, based on two labs, 30 test replicates, and ten different samples. The between-laboratory reproducibility of this test method is being determined and will be available on or before December 31, 2026. Therefore, this standard should not be used for acceptance or rejection of a material for purchasing purpose.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
9 条记录,每页 15 条,当前第 1 / 1 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页