微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 This test method allows for the measurement of the torque retention properties of container/continuous thread closure systems of various designs, materials, and manufacture, and is suitable for packaging development and engineering evaluation.5.2 This test method can be used for the evaluation of container/continuous thread closure systems under controlled conditions (where the application torque is known and the applied downward force to the closure is zero).5.3 This test method measures torque retention properties of container/continuous thread closure systems with the use of a non-automated, spring torque-meter (with either a dial indicator or a digital readout) or a torque wrench.1.1 These test methods evaluate the torque retention of continuous thread closures on containers, with matching finishes, for predetermined environmental conditions over time.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.NOTE 1: The SI unit system is the recommended system.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test procedure provides a method of evaluating the frictional torque and friction factor of hip replacement bearings.5.2 The procedure may be used as a standardized method of measuring friction to investigate the effects of specific test parameters such as hip materials, sizes, designs, radial or diametral clearance, different lubricants, different deformation levels of the acetabular cup, clamping (non-uniform sphericity), damaged/scratched bearings, artificial ageing, misalignments during installation, etc.5.3 Friction torque, and in particular the maximum value, is useful to assess the applicable torques that may compromise fixation, or even risk disassociation of modular components in the acetabular cup or liner/shell assemblies through a lever-out or torsion-out mechanism.5.4 Friction factor is a useful parameter for comparison of materials and designs, and provides insights into the lubrication regime operating in the implant system. Friction factor measurement may also be able to detect acetabular liner deformation (clamping referred to earlier).5.5 The loading and motion of a hip replacement in vivo differ from the loading and the motion defined in this standard. The amount of frictional forces in vivo will, in general, differ from the frictional forces evaluated by this standard test method. The results obtained from this test method cannot be used to directly predict in vivo performance. However, this standard is designed to allow for in-vitro comparisons for different hip designs, when tested under similar conditions.5.6 Although this test method can be used to investigate the many variables listed in 1.2 and 5.2, it does not either provide a method to determine beforehand the combination of these variables that will produce the worst-case couple(s) among a range of sizes; the worst-case testing condition(s) for “normal” or “adverse” conditions; or provide specific methods to deform the acetabular cup, simulate Mode 3 wear conditions (for example, third-body particles, scratched heads), or artificially aged materials. As these methods are not included in the standard and if they are to become the subject of the investigation then it is up to the user to justify the couple(s) selected and method(s) used in the test and, if necessary, provide a rationale for how the “worst-case” couple(s) and method(s) were selected to represent clinically relevant “normal” and “adverse” conditions as part of the report.1.1 This test procedure provides a method of determining the frictional torque and friction factor of artificial hip joint bearings used in total hip replacement (THR) systems under laboratory conditions using a reciprocal friction simulator. This test method specifies the angular movement between the articulating components, the pattern of applied force, and the way data can be measured and analyzed.1.2 Many variables can be investigated using this test method including, but not limited to, the effect of head size, different inclination/version angles, different deformation levels of the acetabular cup, bearing clearances, lubrication, scratched heads, and artificial ageing.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test procedure provides a method of evaluating the frictional torque and friction factor of artificial hip joint bearings under the stated in-vitro test conditions.5.2 Friction is not simply a materials property. The specimen system and the effects on its friction are multi-factorial, including the materials and processing of the components, the design and assembly of the components, the test parameters, and environmental factors (lubricant, temperature, etc.).5.3 The procedure may be used as a standardized method of measuring friction for a particular system, or as a method of investigating the effects of specific test parameters such as hip sizes, designs, radial clearance, different lubricants, clamping (nonuniform sphericity), misalignments during installation, etc.5.4 The procedure may be used to study the variation of friction with time as the specimens wear, which is particularly useful for samples that undergo a transition from “run-in” to “steady-state” wear behavior. Since the motion and load waveforms are identical to those specified in ISO 14242-1:2014, standardized friction and wear measurements may be combined and viewed in the correct perspective where they affect each other.5.5 Frictional torque, and in particular the maximum value, are useful to assess the torques that may compromise fixation, or cause disassociation of modular components in acetabular cup or liner/shell assemblies through a lever-out or torsion-out mechanism.5.6 Friction factor is a useful parameter for comparison of materials and designs, and provides insights into the lubrication regime operating in the implant system. Friction factor measurement may also be able to detect acetabular liner deformation (clamping referred to earlier).1.1 This test procedure provides a method of evaluating the frictional torque and friction factor of artificial hip joint bearings used in Total Hip Replacement systems. The method presented here was based on a published study, first as a conference paper in 2008 (1)2 and then as a peer-reviewed journal paper (2). The method is compatible with and is capable of being carried out during actual wear testing of total hip replacement implants on wear simulators equipped with multiple degrees of freedom force and moment sensors.1.2 Although the methodology described does not replicate all physiological loading conditions, it is a means of in-vitro comparison of the frictional torque and friction factor of artificial hip joint bearings used in Total Hip Replacement systems under the stated test conditions.1.3 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is one of those required to determine if the presence of a medical device may cause injury in the magnetic resonance environment. Other safety issues which should be addressed include but may not be limited to magnetically induced force (see Test Method F2052), RF heating (see Test Method F2182), and image artifact (see Test Method F2119). ISO TS 10974 addresses hazards produced by active implantable medical devices in the MR Environment.5.2 The terms MR Conditional, MR Safe, and MR Unsafe together with the corresponding icons in Practice F2503 shall be used to mark the device for safety in the MR environment.5.3 The acceptance criterion associated with this test shall be justified. If the maximum magnetically induced torque is less than the product of the longest dimension of the medical device and its weight, then the magnetically induced torque is less than the worst case torque on the device due to gravity. For this condition, it is assumed that any risk imposed by the application of the magnetically induced torque is no greater than any risk imposed by normal daily activity in the Earth's gravitational field. This is conservative. It is possible that greater torques also would not pose a hazard. (For example, device position with respect to adjacent tissue, tissue ingrowth, or other mechanisms may act to prevent device movement or forces produced by a magnetically induced torque that are greater than the torque due to gravity from causing harm to adjacent tissue.)5.4 This test method alone is not sufficient for determining if an implant is safe in the MR environment.5.5 The magnetically induced torque considered in this standard is the magneto-static torque due to the interaction of the MRI static magnetic field with the magnetization in the implant. The dynamic torque due to interaction of the static field with eddy currents induced in a rotating device is not addressed in this test method. Currents in lead wires may induce a torque as well.1.1 This test method covers the measurement of the magnetically induced torque produced by the static magnetic field in the magnetic resonance environment on medical devices and the comparison of that torque a user-specified acceptance criterion.1.2 This test method does not address other possible safety issues which may include, but are not limited to, magnetically induced deflection force, tissue heating, device malfunction, imaging artifacts, acoustic noise, interaction among devices, and the functionality of the device and the MR system.1.3 The torque considered here is the magneto-static torque due to the interaction of the MRI static magnetic field with the magnetization of the implant. The dynamic torque due to interaction of the static field with eddy currents induced in a rotating device is not addressed in this test method. Torque induced by currents in lead wires is not addressed by this standard.1.4 The methods in this standard are applicable for MR systems with a horizontal magnetic field. Not all of the methods described in this standard are applicable for use in an MR system with a vertical magnetic field. The Suspension Method and the Low Friction Surface Method require gravity to be orthogonal to the magnetically induced torsion and may not be performed using a vertical magnetic field. The Torsional Spring and Pulley Methods can be adapted to work in a vertical magnetic field, however the example apparatus are not appropriate for use in a vertical magnetic field. The Calculation Based on Measured Displacement Force Method is independent of the MR system and thus could be used for an MR system with a vertical magnetic field.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

This practice establishes procedures for the selection of release torque values for Alpine ski/boot/binding systems. The recommended release torque is chosen based on skier type, age, and other factors such as adjustments for normal, discretionary, and release/retention settings. Also discussed are methods of selecting skier type, determining skier code, and determining release torque value. Procedures discussed in this practice may be used by ski binding manufacturers in their instructions for installation and use and by ski shops for making adjustments on already mounted ski bindings. However, this practice does not cover nonmechanical bindings or bindings used with boots that reach more than halfway up the lower leg.1.1 This practice provides procedures for the selection of release torque values for Alpine ski/boot/bindings systems. These procedures may be used by ski binding manufacturers in their instructions for installation and use and by ski shops for the adjustment of already mounted ski bindings.1.2 This practice is applicable to releasable Alpine ski/boot/binding systems.1.3 Release torque values selected using this practice may not be appropriate for circumstances in which:1.3.1 The skier carries an object that significantly increases the skier's effective body weight,1.3.2 The skier grasps or in some manner controls an object such as a sled, or1.3.3 The skier encounters exceptional snow or terrain conditions not commonly found on developed ski slopes.1.4 This practice may be inappropriate for non-mechanical bindings or bindings used with boots that reach more than half way up the lower leg.1.5 Release torque values outside the recommendations of this practice may increase the risk of injury to the skier. However, skiers who are informed of this potential risk may request such settings and have them provided, subject to any guidelines and limitations specified by the binding manufacturer.1.6 These values refer to recommended release torque for initial adjustment of a ski binding and subsequent readjustment of the binding during routine maintenance or following a suspected malfunction. However, these values are not intended to apply to the condition of the equipment at any time after it is put into use.1.6.1 For information concerning applicable tolerances to be used for the adjustment and inspection of releasable Alpine ski bindings in retail operations consult Practice F1063; for rental applications consult Practice F1064.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method allows for the measurement of the torque retention properties of container/continuous thread closure systems of various designs, materials, and manufacture, and is suitable for package development and engineering evaluation.5.2 Each test method can be used for the evaluation of non child resistant container/continuous thread closure systems under controlled conditions such as when the application torque is known and the applied downward force to the closure is zero or for Type I, style “A” push down and turn child resistant container/continuous thread closure systems under controlled conditions such as when the application torque and the applied downward force to the closure is known.5.3 This test method measures torque retention properties of container/continuous thread closure systems with the use of an automated transducer based torque meter operating at a known rotational velocity (rpm) or known torque ramp.5.4 This test method is intended for measurement of dry torque only.1.1 These test methods evaluate the torque retention of continuous thread closures on containers with matching finishes, for predetermined environmental conditions over time. Methods are defined for both Type I, style “A” push down and turn Type II2 child resistant and non child resistant type closures.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.NOTE 1: The SI unit system is the recommended system.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method differentiates among greases having distinctly different low-temperature characteristics. This test is used for specification purposes and correlates with its precursor which has been used to predict the performance of greases in automotive wheel bearings in low-temperature service.5 It is the responsibility of the user to determine the correlation with other types of service.1.1 This test method covers the determination of the extent to which a test grease retards the rotation of a specially-manufactured, spring-loaded, automotive-type wheel bearing assembly when subjected to low temperatures. Torque values, calculated from restraining-force determinations, are a measure of the viscous resistance of the grease. This test method was developed with greases giving torques of less than 35 N·m at −40 °C.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 WARNING—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Use Caution when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for additional information. The potential exists that selling mercury or mercury-containing products, or both, is prohibited by local or national law. Users must determine legality of sales in their location.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method measures a lubricant's ability to protect hypoid final drive axles from abrasive wear, adhesive wear, plastic deformation, and surface fatigue when subjected to low-speed, high-torque conditions. Lack of protection can lead to premature gear or bearing failure, or both.5.2 This test method is used, or referred to, in specifications and classifications of rear-axle gear lubricants such as:5.2.1 Specification D7450.5.2.2 American Petroleum Institute (API) Publication 1560.5.2.3 SAE J308.5.2.4 SAE J2360.1.1 This test method, commonly referred to as the L-37-1 test, describes a test procedure for evaluating the load-carrying capacity, wear performance, and extreme pressure properties of a gear lubricant in a hypoid axle under conditions of low-speed, high-torque operation.31.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.2.1 Exceptions—Where there is no direct SI equivalent such as National Pipe threads/diameters, tubing size, or where there is a sole source supply equipment specification.1.2.1.1 The drawing in Annex A6 is in inch-pound units.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific warning statements are provided in 7.2 and 10.1.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 This test method is useful to determine the mechanical force of spiral coils of thermostat metal.4.2 The mechanical properties of a coil may vary from lot to lot of thermostat metal material. This method is useful for determining the optimum thickness and length of the material for a given mechanical torque specification.4.3 This test is useful as a quality test to determine acceptance or rejection of a lot of thermostat metal coils.1.1 The test method covers the principles of determining the mechanical torque rate of spiral coils of thermostat metal.NOTE 1: This test method has been developed particularly to cover the determination of the mechanical torque rate of spiral coils made of thermostat metal for carburetors and manifold heat controls. The method is not limited to thermostat metals and can be used for spiral coils of other materials for which the torque rate must be measured accurately.1.2 The values stated in inch-pound units are to be regarded as the standard. The metric equivalents of inch-pound units may be approximate.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Safety Data Sheet (SDS) for this product/material as provided by the manufacturer, to establish appropriate safety, health, and environmental practices, and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 When PVC compounds are mixed under appropriate conditions of heat and shear, a fused mass is produced. This mass has certain melt characteristics which can be defined with a torque rheometer operated under fixed conditions of shear and temperature. The fusion characteristics of a PVC compound are manifest as fusion time, fusion torque, melt torque, melt viscosity, and heat and color stability.5.2 A control lot is to be used as a standard against which other test results are to be compared. Test data are to be evaluated relative to the control lot.1.1 This practice covers the relative fusion characteristics of poly(vinyl chloride) compounds.1.2 The test procedures appear in the following order:  Section Fusion Test  9Thermal Stability Test 10Color-Hold Stability Test 11Shear Stability Test 121.3 The values stated in SI units are to be regarded as the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazards statements are given in Section 8.NOTE 1: There are no ISO standards covering the primary subject matter of this ASTM standard.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM E2624-17 Standard Practice for Torque Calibration of Testing Machines Active 发布日期 :  1970-01-01 实施日期 : 

4.1 Testing machines that apply and indicate torque are used in many industries, in many ways. They may be used in a research laboratory to measure material properties, and in a production line to qualify a product for shipment. No matter what the end use of the machine may be, it is necessary for users to know the amount of torque that is applied, and that the accuracy of the torque value is traceable to the SI. This standard provides a procedure to verify these machines and devices, in order that the indicated torque values may be traceable. A key element to having metrological traceability is that the devices used in the calibration produce known torque characteristics, and have been calibrated in accordance with Practice E2428.4.2 This standard may be used by those using, those manufacturing, and those providing calibration service for torque capable testing machines or devices and related instrumentation.1.1 This practice covers procedures and requirements for the calibration of torque for static and quasi-static torque capable testing machines. These may, or may not, have torque indicating systems and include those devices used for the calibration of hand torque tools. Testing machines may be calibrated by one of the three following methods or combination thereof:1.1.1 Use of standard weights and lever arms.1.1.2 Use of elastic torque measuring devices.1.1.3 Use of elastic force measuring devices and lever arms.1.1.4 Any of the methods require a specific uncertainty of measurement, displaying metrological traceability to The International System of Units (SI).NOTE 1: – for further definition of the term metrological traceability, refer to the latest revision of JCGM 200: International vocabulary of metrology — Basic and general concepts and associated terms (VIM).1.2 The procedures of 1.1.1, 1.1.2, and 1.1.3 apply to the calibration of the torque-indicating systems associated with the testing machine, such as a scale, dial, marked or unmarked recorder chart, digital display, etc. In all cases the buyer/owner/user must designate the torque-indicating system(s) to be calibrated and included in the report.1.3 Since conversion factors are not required in this practice, either english units, metric units, or SI units can be used as the standard.1.4 Torque values indicated on displays/printouts of testing machine data systems—be they instantaneous, delayed, stored, or retransmitted—which are calibrated with provisions of 1.1.1, 1.1.2 or 1.1.3 or a combination thereof, and are within the ±1 % of reading accuracy requirement, comply with this practice.1.5 The following applies to all specified limits in this standard: For purposes of determining conformance with these specifications, an observed value or a calculated value shall be rounded “to the nearest unit” in the last right-hand digit used in expressing the specification limit, in accordance with the rounding method of Practice E29, for Using Significant Digits in Test Data to Determine Conformance with Specifications.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This test method provides reasonably accurate information with regard to the ability of UV curing adhesives to withstand torsional shearing forces. It may be used to determine the effect of environment on torsional shear strength.1.1 This test method covers the simplistic comparison of strengths of glass/metal joints when the adhesive is cured by ultraviolet (UV) radiation and standard specimens are used and tested under specified conditions of preparation, radiation, and load.1.2 This test method involves torque loading UV-bonded hexagonal metal blocks to glass plates.1.3 This test method may be used to obtain comparative torque strength-to-failure data for other bonded joint systems, radiation cured or not.1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
ASTM F117-95(1999)e1 Test Method for Driving Torque of Medical Bone Screws (Withdrawn 2001) Withdrawn, Replaced 发布日期 :  1970-01-01 实施日期 : 

1.1 This test method establishes the recommended type of test fixtures and specimen for determining the standardized insertion torque of medical bone screws1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
30 条记录,每页 15 条,当前第 1 / 2 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页