微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 345元 / 折扣价: 294

在线阅读 收 藏

定价: 605元 / 折扣价: 515 加购物车

在线阅读 收 藏

定价: 260元 / 折扣价: 221 加购物车

在线阅读 收 藏

5.1 This test method is useful for the analysis of total uranium in water following wet-ashing, as required, due to impurities or suspended materials in the water.1.1 This test method covers the determination of total uranium, by mass concentration, in water within the calibrated range of the instrument, 0.1 μg/L or greater. Samples with uranium mass concentrations above the laser phosphorimeter dynamic range are diluted to bring the concentration to a measurable level.1.2 This test method was used successfully with reagent water. It is the user’s responsibility to ensure the validity of this test method for waters of untested matrices.1.3 The values stated in SI units are to be regarded as the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Accurate gas chromatographic determination of trace levels of thiophene in benzene involves special analytical problems because of the difficulties of trace level analysis. These problems arise from the low concentration levels that need to be measured, the type of column and detector needed for analysis, and the potential interference from the benzene matrix.4.2 This test method was found applicable for determining thiophene in refined benzene conforming to the specifications described in Specifications D2359, D4734, and D5871 and may be applicable toward other grades of benzene if the user has taken the necessary precautions as described in the text.4.3 This test method was developed as an alternative technique to Test Method D4735.1.1 This test method covers the determination of thiophene in refined benzene using gas chromatography and sulfur selective detection. The test method is applicable to the determination of thiophene at levels of 0.02 to 2.18 mg thiophene per kg in benzene (mg/kg) on the AED, 0.03 to 1.87 mg/kg on the PFPD, and 0.03 to 2.11 mg/kg on the SCD. The range of the test method may be extended by modifying the sample injection volume, split ratios, calibration range, or sample dilution with thiophene-free solvent.1.2 In determining the conformance of the test results using this method to applicable specifications, results shall be rounded off in accordance with the rounding-off method of Practice E29.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 7.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This test method is similar to Test Method D4367 with the exception that capillary columns are used and intended for trace level of benzene in hydrocarbon solvents. The need for trace benzene analysis in hydrocarbon solvents arose because of the increase of more stringent regulation of benzene level in these materials.1.1 This test method covers the determination by capillary gas chromatography of trace benzene in hydrocarbon solvents at levels from 1.0 to 2400 vppm.NOTE 1: Lower levels of benzene may be determined by this test method. However the gas chromatography (GC) will have to be modified from those specified in this test method. The precision of the method may not apply to these lower benzene levels.1.2 For hazard information and guidance, see the supplier’s Safety Data Sheet.1.3 The values stated in SI units are to be regarded as the statement. The values in parenthesis are given for information only and are not necessarily the exact equivalent of the SI unit values.1.4 For purposes of determining conformance of an observed or a calculated value using this test method to relevant specifications, test result(s) shall be rounded off “to the nearest unit” in the last right-hand digit used in expressing the specification limit, in accordance with Practice E29.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

Each year, many thousands of water samples are collected and the chemical components are determined from natural groundwater sources. An understanding of the relationships between the similarities and differences of these water analyses are facilitated by displaying each separate analysis as a pictorial diagram. This type of diagram allows for a direct comparison between two or more analyses and their displayed ions. This guide presents a compilation of diagrams that allows for transformation of numerical data into visual, usable forms. It is not a guide to selection or use. That choice is program or project specific. The single sample water-analysis diagrams described in this guide display the following; (1) the ppm or mg/L concentrations of the cations and anions on bars, circles, or baseline diagrams; (2) the epm or meq/L percentages of the cation and anion weights on bars, double bars, circles, radiating vectors, or kitelike shapes and; (3) a combination of (1) and (2) on circles (1, 3, 25, 27, 28, 29). The classification of the composition of natural groundwater is an early use of the single sample water-analysis diagram. Note 3—Palmer, in 1911, developed a tabular system for the classification of natural water. Rogers, in a 1917 study of oil-field waters, presented the Palmer classification on a graphical display that had three vertical bars (6, 7, 29). The origin of the water may be postulated by the amount and the relationship of the cations and anions in a water sample that is plotted on the diagram. Patterns visually indicate water types and origins. Comparison of the visual similarity or dissimilarity of diagrams for different water analyses that are from separate locations allows the analyst to evaluate if the samples may be from the same water source or not. Numerous interpretive methods are possible from the examination of a series of the single sample water-analysis diagrams. Note 4—For example, by arranging the diagrams at the point of origin as represented on a geologic cross section or on an areal map, the hydrochemical changes can be visualized as the water travels through the hydrologic regime, the amount of mixing that has taken place with water from a different origin, and the effects of ambient conditions, such as air, temperature, rock, and man-induced contaminants, on the water. Note 5—It should be noted that for many hydrochemical research problems involving the interpretation of the origin, chemical reactions, and mixing of natural water, the single sample water-analysis diagram is only one segment of several analytical methods needed to understand condition.1.1 This guide covers the category of water-analysis diagrams that use pictorial or pattern methods (for example, bar, radiating vectors, pattern, and circular) as a basis for displaying each of the individual chemical components that were determined from the analysis of a single sample of natural groundwater (see Terminology). 1.2 This guide on single-analysis diagrams is the second of several standards to inform the professionals in the field of hydrology with the traditional graphical methods available to display groundwater chemistry. Note 1—The initial guide described the category of water-analysis diagrams that use two-dimensional trilinear graphs to display, on a single diagram, the common chemical components from two or more complete analyses of natural groundwater. 1.2.1 A third guide will be for diagrams based on data analytical calculations that include those categories of water analysis graphs where multiple analyses are analyzed statistically and the results plotted on a diagram (for example, the box, and so forth). 1.3 Numerous methods have been developed to display, on single-analyses diagrams, the ions dissolved in water. These methods were developed by investigators to assist in the interpretation of the origin of the ions in the water and to simplify the comparison of analyses, one with another. 1.4 This guide presents a compilation of diagrams from a number of authors that allows for transformation of numerical data into visual, usable forms. It is not a guide to selection or use. That choice is program or project specific. Note 2—Use of tradenames in this guide is for identification purposes only and does not constitute endorsement by ASTM. 1.5 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 This test method is applicable to the determination of trace amounts of aldehydes and ketones in aqueous solutions and a wide variety of organic solvents.1.1 This test method covers the determination of total carbonyl in the range from 0.5 μg to 50 μg calculated as CO.1.2 This test method is intended to be general and does not include steps for sample preparation.1.3 Acetals that hydrolyze under the conditions of the test are also determined.1.4 Carbonyl derivatives such as acetals and imines that are easily hydrolyzed may be determined by an alternative procedure.1.5 The developed color is not stable and must be measured within a specified period.NOTE 1: Other test methods for the determination of traces of carbonyl compounds are given in Test Methods D1089, D1612, D2119, and D2191.1.6 Review the current appropriate Safety Data Sheets (SDS) for detailed information concerning toxicity, first aid procedures, and safety precautions.1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.8 In determining the conformance of the test results using this method to applicable specifications, results shall be rounded off in accordance with the rounding-off method of Practice E29.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazards statements are given in Section 7 and Section 8.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
71 条记录,每页 15 条,当前第 1 / 5 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页