微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 This test method provides precise dimensions necessary for the calculation of properties expressed in physical units.5.2 This test method provides a means to characterize the variability of the material thickness in the transverse and machine directions for quality control purposes, production process support and analysis, incoming product inspection and for defining variability for buying/selling film.5.3 This test method provides a method for instrument calibration utilizing traceable standards available from the National Institute of Standards and Technology (NIST).5.4 It is not intended to replace other thickness measurements based on commercial portable tools, nor is it implied that thickness measurements made by different procedures will exactly agree.1.1 This test method covers the determination of the thickness of plastic film, ranging in thickness from 2.5 to 250 µm, with a non-contact thickness gauge that uses capacitance-based technology. It includes a method to generate a series of thickness data points that can be used to characterize the variability patterns of film for both transverse or machine direction (profiling).NOTE 1: Thicker specimens, typically 250 µm to 2500 µm thick, can utilize this test method if the apparatus is designed to measure and handle materials of this thickness range, and the apparatus complies with the requirements as defined in this standard.1.2 This test method provides a method for buyers and sellers of film to communicate the thickness and pattern of thickness variability of the product they are buying/selling.1.3 This test method does not apply to textured or porous films or films that are conductive or coated with a conductive substance.NOTE 2: Films that contain excessive levels of anti-static additive can be conductive and need to be tested to verify that they do not cause a negative reading on the instrument.1.4 Units—The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard.NOTE 3: There is no known ISO equivalent to this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 This test method is designed to present in a standardized format information on the variability of strength of cement from a single source over a period of time. It can be applied to all hydraulic cements covered in Specifications C150, C595, and C1157. The results derived from this test method are intended for information only and are not requirements of any existing ASTM specification. A specification may refer to this test method to obtain information on the variability of cement from a single source.4.2 The procedure is based on obtaining samples from locations during the delivery of cement to the user and is more representative of the variability of cement used in concrete production than test data reported on mill test reports. Variation determined from the test results is corrected for testing error, therefore giving the user one indicator of the source variation of the cement.NOTE 1: It should be recognized that concrete strength variability is influenced by other factors in addition to cement strength variability.4.3 This test method does not provide information on the relationship between the variability of cement and the variability of concrete properties. The user can, along with supplementary information or correlative testing of concrete properties, develop quantitative estimates of the effects.1.1 This test method covers a procedure for determining the variability of a hydraulic cement produced at a single source using strength tests as the characteristic property. It is intended that this test method normally be used for the predominant cement manufactured at a cement plant. Guidelines for sampling, testing, presentation of results, and evaluation are given.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as the standard. The values stated in each system may not be exact equivalents; therefore each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. One system of units is used in the Figure and Tables in this standard to illustrate the calculation methods that are applicable independent of the system of units.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This practice provides a systematic procedure for sampling and determining the variability of user-selected properties of concrete-making materials. Results derived from application of the practice are generally intended for information only and are not requirements of any existing ASTM specification on concrete or concrete-making materials. A concrete materials specification may make reference to this practice as a means of obtaining variability information, but needs to define the properties to be measured and the lot size and sample unit to be used. This practice is applicable to both producers and consumers of concrete-making materials, although details of application of the practice may vary, depending on the intended purpose of the user of this practice.4.2 The procedure is applicable to any quantitative property of any concrete-making material that can be measured by a standard test method. The procedure is based on grab samples, which will tend to show the maximum amount of variation of the material being evaluated. The procedure is useful if grab samples are obtained from sampling units that are being delivered to the user of a material and better represents the variability of the material used in concrete production than tests performed on the material for specification compliance that are documented on a mill test report or material certification. The procedure was developed for application to materials from a single source, but it can be applied to a materials delivery stream from more than one source, depending on the purposes of the user of the practice. Variations among test results on separate samples within a lot are corrected for testing error, therefore giving an estimate of the variability of the selected material property. The variability of the selected material property provides the user with one indicator of the source variation of the concrete-making material.4.3 Although variability in properties of concrete-making materials can be a significant cause of variability in concrete properties, this practice does not purport to give information on this relationship. This practice does give information on variability of concrete-making materials from which the user can, along with supplementary information or correlative testing of concrete properties, develop quantitative estimates of the effects.1.1 This practice covers a procedure for determining the variability of concrete-making materials from a single source by measuring a characteristic property of the material. It includes recommendations on sampling, testing, analysis of data, and reporting.1.2 The system of units for this practice is not specified. Units used in examples of calculation methods are for illustration purposes. The calculation methods described in this practice can be used with either SI or inch-pound units.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Many standards and specifications reference exposure tests performed according to standards that are the responsibility of Committee G03 on Durability of Nonmetallic Materials. In many cases, use of the data generated in these tests fails to consider the ramifications of variability in the exposure test practices. This variability can have a profound effect on the interpretation of results from the exposure tests, and if not taken into consideration in test design and data analysis, can lead to erroneous or misleading conclusions. This guide lists some of the sources for test variability and recommends strategies for executing successful weathering studies. Not all sources of variability in weathering testing are addressed in this guide. Specific materials, sampling procedures, specimen preparation, specimen conditioning, and material property measurements can contribute significantly to variability in weathering test results. Many of these concerns are addressed in Guide G147. To reduce the contribution of an instrumental method to test variability, it is essential to follow appropriate calibration procedures and ASTM standards associated with the particular property measurement. Additional sources of variability in test results are listed in Guide D4853, along with methods for identifying probable causes.1.1 This guide covers information on sources of variability and strategies for its reduction in exposure testing, and for taking variability into consideration in the design, execution, and data analysis of both exterior and laboratory accelerated exposure tests.1.2 The values stated in SI units are to be regarded separately as the standard. The inch-pound values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Test Method D6612 for yarn number and yarn number variability is satisfactory for acceptance of commercial shipments and is used in the trade.5.1.1 If there are differences of practical significance between the reported test results for two or more laboratories, comparative tests should be performed by those laboratories to determine if there is a statistical bias between them, using competent statistical assistance. As a minimum, samples used for each comparative tests should be as homogeneous as possible, drawn from the same lot of material as the samples that results in disparate results during initial testing, and randomly assigned in equal numbers to each laboratory. Other fabrics with established tests values are used for this purpose. The test results from the laboratories involved should be compared appropriate statistical analysis and a probability level chosen by the two parties before testing begins, at a probability level chosen prior to the testing series. If a bias is found, either its cause must be found and corrected, or future test results adjusted in consideration of the known bias.5.1.2 The average results from the two laboratories should be compared using appropriate statistical analysis and a probability level chosen by the two parties before the testing is begun. If a bias is found, either its cause must be found and corrected or the purchaser and the supplier must agree to interpret future test results with consideration to the known bias.5.2 Test Method D6612 also is used for the quality control of filament yarns.5.3 Indices of Variability: 5.3.1 Coefficient of Variation—%CV is a standard statistical calculation and is the most common index of yarn unevenness. For most textile applications in the 80 to 330 dtex (70 to 300 denier) range, a 1.0 to 1.3 %CV is adequate. %CV of yarns coarser than 666 dtex (600 denier) is not routine and usually not meaningful. %CV is less discriminating that %DS.5.3.2 Bad/Good Test—%BGT, which will normally be up to 20 % greater than %DS value, emphasizes the greatest spread in the entire length tested, (%DS is an average). If the value is greater than 50 % of the %DS, it suggests that there is a process that needs to be investigated.5.3.3 Density Spread—%DS is equivalent to the Uster % unevenness (Test Method D1425) and is an indication of short-term variability. Yarns with extreme values are more likely to cause trouble in subsequent yarn processes, which makes this perhaps the most useful index. The minimum achievable and maximum tolerance spread for a yarn product will depend on the yarn manufacturing process and end use. A spread of 3 to 4 % generally is, for most textile applications, in the range of 160 to 550 dtex (150 to 500 deniers). More critical applications, such as those using finer yarns, may require lower values.5.3.4 Density Frequency Variability—DFV is an index of spacing variability, whereas the others are indices of magnitude or unevenness. Frequency variability can induce resonance in high-speed processing and is a common source of barre, dye streaks, or patterned unevenness in fabrics.1.1 This test method covers the measurement of yarn number up to 4000 dtex (3600 denier) and related variability properties of filament and spun yarns using an automated tester with capability for measuring mass variability characteristics.1.2 Yarn number variability properties include percent density spread (%DS), coefficient of variation (%CV), density frequency variation.NOTE 1: For determination of yarn number by use of reel and balance, refer to Test Method D1907. For another method of measuring variability (unevenness) in yarn, refer to Test Method D1425.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore to ensure conformance with this standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Passive soil gas samplers are a minimally invasive, easy-to-use technique in the field for identifying VOCs and SVOCs in the vadose zone. Similar to active soil gas and other field screening techniques, the simplicity and low cost of passive samplers enables them to be applied in large numbers, facilitating detailed mapping of contamination across a site, for the purpose of identifying source areas and release locations, focusing subsequent soil and groundwater sampling locations, focusing remediation plans, identifying vapor intrusion pathways, tracking groundwater plumes, and monitoring remediation progress. Data generated from passive soil gas sampling are semi-quantitative and are dependent on numerous factors both within and outside the control of the sampling personnel. Key variables are identified and briefly discussed in the following sections.NOTE 1: Additional non-mandatory information on these factors or variables are covered in the applicable standards referenced in Section 2, and the footnotes and Bibliography presented herewith.5.2 Application—The techniques described in this practice are suitable for sampling soil gas with sorbent samplers in a wide variety of geological settings for subsequent analysis for VOCs and SVOCs. The techniques also may prove useful for species other than VOCs and SVOCs, such as elemental mercury, with specialized sorbent media and analysis.5.2.1 Source Identification and Spatial Variability Assessment—Passive soil gas sampling can be an effective method to identify contaminant source areas in the vadose zone and delineate the extent of contamination. By collecting samples in a grid with fewer data gaps, the method allows for an increase in data density and, therefore, provides a high-resolution depiction of the nature and extent of contamination across the survey area. By comparing the results, as qualitative or quantitative, from one location to another, the relative distribution and spatial variability of the contaminants in the subsurface can be determined, thereby improving the conceptual site model. Areas of the site reporting non-detects can be removed from further investigation, while subsequent sampling and remediation can be focused in areas determined from the PSG survey to be impacted.5.2.2 Monitoring—Passive soil gas samplers are used to monitor changes in site conditions (for example, new releases on-site, an increase in contaminant concentrations in groundwater from onsite or off-site sources, and effectiveness of remedial system performance) as reflected by the changes in soil gas results at fixed locations over time. An initial set of data is collected to establish a baseline and subsequent data sets are collected for comparison. The sampling and analytical procedures should remain as near to constant as possible so significant changes in soil gas results can be attributed to those changes in subsurface contaminant levels at the site that will then warrant further investigation to identify the cause.5.2.3 Vapor Intrusion Evaluation—Passive soil gas sampling can be used to identify vapor migration and intrusion pathways (see Practice E2600), with the data providing a line of evidence on the presence or absence of the compounds in soil vapor, the nature and extent in relation to potential receptors, and whether a vapor pathway is complete. Sorbent samplers can be placed beneath the slab or in close proximity to buildings to collect time-integrated samples targeting VOCs and SVOCs at concentrations often lower than can be achieved with active soil gas sampling methods.5.3 Limitations—Passive soil gas data are reported in mass of individual compounds or compound groups identified per sample location, with the reporting units generally in nanograms (ng) or micrograms (μg) per sampler and not a concentration (see 6.8). Ideally, the data produced using this method will be representative of time-weighted soil gas concentrations, present in the vicinity of the PSG sampler and sorbed on the sampler during the exposure period; however, non-uniformity of sampler design, starvation effects during sample collection, or an insufficient amount of sorbent that results in saturation of the sorbent surface area, or combinations thereof, will affect the relationship between sorbed mass and soil gas concentrations present. The degree to which these data are representative of any larger areas or different times depends on numerous site-specific factors. In general, information obtained from a passive soil gas sampling program alone is not sufficient to support a quantitative determination of soil gas concentrations.5.4 Sampler Design—Passive soil gas is an effective investigatory/monitoring tool if the appropriate quality controls are included in the technology design, which includes uniformity in the construction of the sampler. At a minimum, controls should be in place to ensure that (1) the appropriate sorbents with hydrophobic properties are used to target the compounds of concern (see Practice D6196), (2) materials used to house the sorbents are chemically-inert, non-reactive or corrosive, and will not off-gas compounds or act as competing sorbents (see Guide D5314, paragraph 6.5.3), and (3) the sorbents are housed in suitable containers that protect the sorbents, allow diffusion of the soil gas to the sorbents, and facilitate installation of the sampler to the desired sampling depth.5.4.1 Sampler Conditioning—Before being sent to the field for deployment, the PSG sampler should be conditioned to remove any potential contamination present on or in the sorbent and sampler materials or both encountered during sampler construction or storage prior to use. The conditioning process should be one that does not damage the sorptive capability of the sorbent. Following conditioning, the sampler is then capped/resealed and stored in a container that provides adequate protection against ambient sources of contamination before and after sample collection in the field, including during transport. Preparation blanks from each batch of conditioned samplers should be analyzed to verify that the sorbents were effectively conditioned and do not retain measurable masses of target compounds above reporting limits. Furthermore, when trip blanks, which are included with all shipments to and from the field, report non-detects for the targeted compounds, these QC samples provide additional evidence that the samplers were conditioned to have no measurable mass of target compounds and that the measurements on field samples originate from the site itself.5.5 Sampler Exposure Periods—Guidelines for PSG exposure periods for source identification, spatial variability assessment, and vapor intrusion evaluation should consider the project objectives, target compounds, required detection limits or anticipated soil gas concentrations or both, design of the passive sampler, matrix heterogeneity, soil types (total porosity), soil moisture level (water filled porosity), and depth to expected contaminants. Sites having coarse-grained dry soils, high concentrations, shallow groundwater or soil contamination or both, and volatile compounds typically require shorter exposure periods. Sites with finegrained, clays or moist soils or both, deep contaminant sources, low concentrations, or SVOCs, or combinations thereof, typically require longer exposure periods. Exposure periods typically range from days to weeks but can be as brief as one hour when high concentrations of target compounds are expected in the soil vapor.5.6 Sampler Spacing—Grid designs can consist of regularly spaced sampler locations, random or irregular spaced, and as transects or varying spatial intervals (see Guide D6311). Biased spacing in which smaller sample spacing is used in areas with known or suspected targets (that is, source areas) and large spacing in areas not believed to be impacted are also used. For large area investigations, a staged or phased sampling program can be used. The investigation begins with a widely spaced regular grid design. The initial soil gas results are reviewed and subsequent sampling is conducted at locations where the target compounds were observed. The subsequent survey design consists of more closely spaced samples to resolve the feature of interest in greater detail. Multiple phases of soil gas sampling can be combined to provide one comprehensive image of the soil gas results. Staged or phased investigations require multiple deployments adding costs to the overall investigations. However, areas of the site that have nondetectable values in the soil gas may be removed from further investigation.5.6.1 There is no prescribed or set sampler spacing appropriate for all sites, as sample spacing and survey design are based on project objectives and each site is unique. General recommendations for sampler spacing range from 3 to 30 m, with 7.5- to 15-m spacing when site knowledge is lacking. Infill sampling is recommended in areas having wider sample spacing initially.5.6.2 Site-specific information (investigation area size, groundwater depth, soil type and moisture content, purpose of the investigation, etc.) should be considered along with these guidelines in determining the grid spacing used. The selection of grid cell size (a direct function of the sampler spacing deployed in a grid pattern) is strongly dependent upon the relationship between both project confidence level and budget requirements. The tendency exists for investigators with constrained budgets to use overly large grid cell spacing. This action of “undersampling” normally results in inadequate, over-interpreted data with unsupported conclusions. Care shall be taken to avoid this problem (Guide D5314). In designing an effective soil gas survey to develop a rational conceptual site model, the survey objective balanced by budget should determine the sample spacing.5.7 Sampling Depth—Consideration of project objectives should be taken into account when determining deployment depth. It is ideal, when possible, to deploy samplers at the same depth to ensure data consistency. PSG samplers are generally installed from a depth of 15-cm to 1.0-m BLS; however, holes may be advanced to greater depths when appropriate, and samplers can also be suspended beneath surface flux chambers or in permanent vapor ports.5.8 Soil Types—In general, sandy soils tend to be more porous and permeable and, thus, require shorter exposure times. Conversely, soils with high clay contents tend to be less porous and permeable and typically have lower flux rates (see Practice D2487). Soil types vary in vapor permeability due to the differences in the number and interconnectivity of air-filled pores. The more air-filled, interconnected the pores are, the greater the potential flux of contaminants through the soil to the sampler. Starvation effects resulting in low bias are more likely to occur in low permeability soils where the flux through the soil matrix is limited.5.9 Effects of Soil Moisture—Because diffusion of vapors from subsurface sources to passive samplers relies on interconnected and air-filled pores within the soil column, soil moisture can have a significant effect on the flux of contaminants and, therefore, the mass of the contaminant available for adsorption by the sampling device. The use of hydrophobic sorbents minimizes the effect on sampler sensitivity, but does not change the impact of soil moisture on contaminant soil gas concentrations. As a result, areas of high soil moisture may have significantly lower soil gas results than areas of low soil moisture, even though subsurface concentrations are similar in both areas. Therefore, some knowledge of the soil moisture conditions can help in interpreting soil gas results. This knowledge is also useful for comparing results from subsequent surveys performed at a site.5.10 Effects of Target Compounds—In general, the larger the molecular weight of the compounds being targeted, the lower the vapor pressure and resulting concentrations in the soil gas, and therefore, the longer the required exposure time of the PSG samplers in the vadose zone.5.11 Sealing (Plugging) the Top of the Hole—Once the PSG sampler is inserted in the ground, the top of the hole is plugged with a material that will effectively seal the hole, such as aluminum foil or cork, which can then be covered with soil. For concrete or asphalt surfacing, an approximately 5-mm-thick mortar or quick-setting concrete patch above the plug can be used as an option to maintain the integrity of the surface while the sampler is in the ground. The materials used to plug the hole should not contribute compounds of concern and the seal should be flush mounted to keep the sampler safe from harm, prevent ingress of ambient air or surface water, and not interrupt ongoing site activities during the exposure period.5.12 Effects of Ambient Air While Installing/Retrieving Samplers—PSG samplers arrive at the site sealed to protect the sorbents from contaminants in ambient air during transport. Just prior to installation into the hole, and then again during retrieval, the sampler is exposed to ambient air for a brief period of time. The typical time of exposure to the ambient air is less than 15 s. In some instances, it may be necessary to collect a field blank using a PSG sampler to evaluate whether compounds in the ambient air potentially biased the results. To perform this quality control check, an identical PSG sampler is opened and exposed to the ambient air for approximately the same amount of time required to install and then later retrieve a PSG sampler at a designated location. The field blank is sealed at all other times and is transported to the laboratory along with the field samples. Care should be taken to minimize the sorbent exposure to ambient air during field activities. Obvious sources of contamination (for example, gas-powered electrical generators or vehicle exhaust) should not be in close proximity when installing/retrieving a sampler.NOTE 2: The quality of the result produced by this standard is dependent on the competence of the personnel performing it and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/and so forth. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 Purpose—This practice covers standardized techniques for passively collecting soil gas samples from the vadose zone and is to be used in conjunction with Guide D5314.1.2 Objectives—Objectives guiding the development of this practice are: (1) to synthesize and put in writing good commercial and customary practice for conducting passive soil gas sampling, (2) to ensure that the process for collecting and analyzing passive soil gas samples is practical and reasonable, and (3) to provide standard guidance for passive soil gas sampling performed in support of source identification, spatial variability/extent determinations, site assessment, site monitoring, and vapor intrusion investigations.1.3 This practice does not address requirements of any federal, state, or local regulations or guidance or both with respect to soil gas sampling. Users are cautioned that federal, state, and local guidance may impose specific requirements that differ from those of this practice.1.4 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This practice offers a set of instructions for performing one or more specific operations. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this practice may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word “Standard” in the title means only that the document has been approved through the ASTM consensus process.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This practice should be used whenever measured color-scale or color-difference-scale values are to be compared to an established tolerance. In this way it can be demonstrated quantitatively that the sampling and measurement procedures are adequate to allow an unambiguous decision as to whether or not the mean results are within tolerance.5.2 This practice is based on portions of SAE J 1545, as it applies to painted or plastic automotive parts. It is generally applicable to object colors in various materials. Textured materials, such as textiles, may require special consideration (see SAE J 1545 and STP 15D Manual on Presentation of Data and Control Chart Analysis5).5.3 While Practice E178 deals with outliers, it does not include definitions relating to the box and whisker technique. The definition of an outlier is operational and a little vague because there is still considerable disagreement about what constitutes an outlier. In any normally distributed population, there will be members that range from minus to plus infinity. Theoretically, one should include any member of the population in any sample based on estimates of the population parameters. Practically, including a member that is found far from the mean within a small sample, most members of which are found near the mean, will introduce a systematic bias into the estimate of the population parameters (mean, standard deviation, standard error). Such a bias is in direct contrast with the goal of this practice, namely, to reduce the effects of variability of measurement. For the purposes of this practice, no distinction is made between errors of sampling and members of the tails of the distribution. Practice E178 has several methods and significance tables to attempt to differentiate between these two types of extreme values.1.1 Reduction of the variability associated with average color or color-difference measurements of object-color specimens is achieved by statistical analysis of the results of multiple measurements on a single specimen, or by measurement of multiple specimens, whichever is appropriate.1.2 This practice provides a means for the determination of the number of measurements required to reduce the variability to a predetermined fraction of the relevant color or color-difference tolerances.1.3 This practice is general in scope rather than specific as to instrument or material.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
7 条记录,每页 15 条,当前第 1 / 1 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页