
【国外标准】 Standard Test Methods for Determination of the Soil Water Characteristic Curve for Desorption Using Hanging Column, Pressure Extractor, Chilled Mirror Hygrometer, or Centrifuge
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 The soil water characteristic curve (SWCC) is fundamental to hydrological characterization of unsaturated soils and is required for most analyses of water movement in unsaturated soils. The SWCC is also used in characterizing the shear strength and compressibility of unsaturated soils. The unsaturated hydraulic conductivity of soil is often estimated using properties of the SWCC and the saturated hydraulic conductivity.5.2 This method applies only to soils containing two pore fluids: a gas and a liquid. The liquid is usually water and the gas is usually air. Other liquids may also be used, but caution must be exercised if the liquid being used causes excessive shrinkage or swelling of the soil matrix.5.3 A full investigation has not been conducted regarding the correlation between soil water characteristic curves obtained using this method and soil water characteristics curves of in-place materials. Thus, results obtained from this method should be applied to field situations with caution and by qualified personnel.NOTE 1: The quality of the result produced by this standard depends on the competence of the personnel performing the test and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing, sampling, inspection, etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself ensure reliable results. Reliable results depend on many factors. Practice D3740 provides a means of evaluating some of these factors.1.1 These test methods cover the determination of soil water characteristic curves (SWCCs) for desorption (drying). SWCCs describe the relationship between suction and volumetric water content, gravimetric water content, or degree of water saturation. SWCCs are also referred to as soil water retention curves, soil water release curves, or capillary pressure curves.1.2 This standard describes five methods (A-E) for determining the soil water characteristic curve. Method A (hanging column) is suitable for making determinations for suctions in the range of 0 to 80 kPa. Method B (pressure chamber with volumetric measurement) and Method C (pressure chamber with gravimetric measurement) are suitable for suctions in the range of 0 to 1500 kPa. Method D (chilled mirror hygrometer) is suitable for making determinations for suctions in the range of 500 kPa to 100 MPa. Method E (centrifuge method) is suitable for making determinations in the range 0 to 120 kPa. Method A typically is used for coarse soils with little fines that drain readily. Methods B and C typically are used for finer soils, which retain water more tightly. Method D is used when suctions near saturation are not required and commonly is employed to define the dry end of the soil water characteristic curve (that is, water contents corresponding to suctions >1000 kPa). Method E is typically used for coarser soils where an appreciable amount of water can be extracted with suctions up to 120 kPa. The methods may be combined to provide a detailed description of the soil water characteristic curve. In this application, Method A or E is used to define the soil water characteristic curve at lower suctions (0 to 80 kPa for A, 0 to 120 kPa for E) near saturation and to accurately identify the air entry suction, Method B or C is used to define the soil water characteristic curve for intermediate water contents and suctions (100 to 1000 kPa), and Method D is used to define the soil water characteristic curves at low water contents and higher suctions (>1000 kPa).1.3 All observed and calculated values shall conform to the guide for significant digits and rounding established in Practice D6026. The procedures in Practice D6026 that are used to specify how data are collected, recorded, and calculated are regarded as the industry standard. In addition, they are representative of the significant digits that should generally be retained. The procedures do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the objectives of the user. Increasing or reducing the significant digits of reported data to be commensurate with these considerations is common practice. Consideration of the significant digits to be used in analysis methods for engineering design is beyond the scope of this standard.1.4 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
标准号:
ASTM D6836-16
标准名称:
Standard Test Methods for Determination of the Soil Water Characteristic Curve for Desorption Using Hanging Column, Pressure Extractor, Chilled Mirror Hygrometer, or Centrifuge
英文名称:
Standard Test Methods for Determination of the Soil Water Characteristic Curve for Desorption Using Hanging Column, Pressure Extractor, Chilled Mirror Hygrometer, or Centrifuge标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 其它标准
- 上一篇: ASTM D6835-23 Standard Classification System for Thermoplastic Elastomer-Ether-Ester Molding and Extrusion Materials (TEEE)
- 下一篇: ASTM D6837-13 Standard Test Method for Measurement of Effects of Automotive Engine Oils on Fuel Economy of Passenger Cars and Light-Duty Trucks in Sequence VIB Spark Ignition Engine (Withdrawn 2022)
- 推荐标准
- ASTM E316-17 Standard Test Method for Determination of Iron in Manganese Ores by Hydrogen Sulfide Reduction-Dichromate Titrimetry
- ASTM E3161-21 Standard Practice for Preparing a Pseudomonas aeruginosa or Staphylococcus aureus Biofilm using the CDC Biofilm Reactor
- ASTM E3163-18 Standard Guide for Selection and Application of Analytical Methods and Procedures Used during Sediment Corrective Action
- ASTM E3164-23 Standard Guide for Contaminated Sediment Site Risk-Based Corrective Action – Baseline, Remedy Implementation and Post-Remedy Monitoring Programs
- ASTM E3166-20e1 Standard Guide for Nondestructive Examination of Metal Additively Manufactured Aerospace Parts After Build
- ASTM E3168-20a Standard Practice for Determining Low-Contrast Visual Acuity of Radiographic Interpreters
- ASTM E317-21 Standard Practice for Evaluating Performance Characteristics of Ultrasonic Pulse-Echo Testing Instruments and Systems without the Use of Electronic Measurement Instruments
- ASTM E3170/E3170M-18(2023) Standard Practice for Phased Array Ultrasonic Testing of Polyethylene Electrofusion Joints
- ASTM E3171-21a Standard Test Method for Determination of Total Silver in Textiles by ICP-OES or ICP-MS Analysis
- ASTM E3178-18 Standard Practice for Evaluating Static and Cidal Chemical Decontaminants against Bacillus Spores using Centrifugal Filtration Tubes
- ASTM E3182-20 Standard Practice for Preparing an Occupant Exposure Screening Report (OESR) for Substances in Installed Building Products
- ASTM E3186-19 Standard Guide for Use and Testing of Dry-Block Temperature Calibrators
- ASTM E3191-18 Standard Specification for Permanent Foaming Fixatives Used to Mitigate Spread of Radioactive Contamination
- ASTM E3192/E3192M-20 Standard Practice for Soft Armor Conditioning by Tumbling
- ASTM E3197-23 Standard Terminology Relating to Examination of Fire Debris