
【国外标准】 Standard Test Method for Shock Testing of Structural Insulation of A-Class Divisions Constructed of Steel or Aluminum
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 This test method evaluates the ability of a non-combustible passive fire protection system installed on structural divisions on commercial ships to function after shock loading.4.2 The shock loading is accomplished by conducting impact testing of a test specimen consisting of insulation on a standard steel or aluminum structural core installed on a medium weight shock test machine.4.3 Following the shock testing the shocked test specimen and an unshocked test specimen are tested for fire resistance. Both shocked and unshocked test specimens are installed side-by-side in a fixture and fire tested at the same time.4.4 The fire resistance for both specimens is measured and recorded.4.5 Other passive fire protection systems using the same insulation materials and attachment methods and having lower fire resistance ratings will be accepted without additional shock testing.AbstractThis specification covers a method for evaluating insulation installed on steel or aluminium structural division as defined in IMO resolution A. 754 (18) to assure insulation is note degraded in the event of shock. The non-combustible passive fire protection insulation shall be installed to meet the highest level of commercial fire resistance expected. Lower levels of fire resistance will be allowed without additional shock level testing. This testing method is used to measure and describe the response of materials, products, or assemblies to heat and flame under controlled conditions. This specification also provides guidelines for shock test before conducting a fire resistance test. In the shock test, the fire resistant divisions, bulkheads and decks shall be tested according to the specifics required by the MIlL-S-901D, Section 3.2.1 (b) Medium Weight Shock Test.1.1 The purpose of the specification is to evaluate insulation installed on steel or aluminum structural division as defined in IMO Resolution A.754 (18) to ensure the insulation is not degraded in the event of a shock.1.2 The non-combustible passive fire protection insulation shall be installed, which will meet the highest level of commercial fire resistance expected. Lower levels of fire resistance will be allowed without additional shock testing.1.3 This test method is used to measure and describe the response of materials, products, or assemblies to heat and flame under controlled conditions, but does not by itself incorporate all factors required for fire-hazard or fire-risk assessment of the materials, products or assemblies under actual fire conditions.1.4 Fire testing is inherently hazardous. Adequate safeguards for personnel and property shall be employed in conducting these tests.1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM F2877/F2877M-13(2019)
标准名称:
Standard Test Method for Shock Testing of Structural Insulation of A-Class Divisions Constructed of Steel or Aluminum
英文名称:
Standard Test Method for Shock Testing of Structural Insulation of A-Class Divisions Constructed of Steel or Aluminum标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM D8223-19 Standard Practice for Evaluation of Fire-Retardant Treated Laminated Veneer Lumber
- ASTM D8225-19 Standard Test Method for Determination of Cracking Tolerance Index of Asphalt Mixture Using the Indirect Tensile Cracking Test at Intermediate Temperature
- ASTM D8226-21ae1 Standard Test Method for Measurement of Effects of Automotive Engine Oils on Fuel Economy of Passenger Cars and Light-Duty Trucks in Sequence VIF Spark Ignition Engine
- ASTM D8227-20 Standard Test Method for Determining the Coefficient of Friction of Synchronizer Lubricated by Mechanical Transmission Fluids (MTF) Using a High-Frequency, Linear-Oscillation (SRV) Test Machine
- ASTM D823-18(2022) Standard Practices for Producing Films of Uniform Thickness of Paint, Coatings and Related Products on Test Panels
- ASTM D8232-18 Standard Test Procedures for Measuring the Inclination of Deep Foundations
- ASTM D8236-18 Standard Practice for Preparing an Equilibrium Liquid/Vapor Sample of Live Crude Oil, Condensates, or Liquid Petroleum Products Using a Manual Piston Cylinder for Subsequent Liquid Analysis or Gas Analysis
- ASTM D8239-23 Standard Specification for Performance-Graded Asphalt Binder Using the Multiple Stress Creep and Recovery (MSCR) Test
- ASTM D8240-22e1 Standard Specification for Less-Flammable Synthetic Ester Liquids Used in Electrical Apparatus
- ASTM D8241/D8241M-19 Standard Tables of Body Measurements for Young Men Type, Size Range 32 – 48
- ASTM D8243-19 Standard Test Method for Determination of APS Reductase to Estimate Sulfate Reducing Bacterial Bioburdens in Water – Enzyme-Linked Immunosorbent Assay Method
- ASTM D8247-19 Standard Test Method for Determination of Total Fluorine and Total Chlorine in Coal by Oxidative Pyrohydrolytic Combustion Followed by Ion Chromatography Detection
- ASTM D8252-23 Standard Test Method for Vanadium and Nickel in Crude and Residual Oil by X-ray Spectrometry
- ASTM D8253-21 Standard Test Method for Determination of the Asphaltene Solvency Properties of Bitumen, Crude Oil, Condensate and/or Related Products for the Purpose of Calculating Stability, Compatibility for Blending, Fouling, and Processibility (Manual Microscopy
- ASTM D8254-19 Standard Test Method for Flash and Fire Points of Asphalt by Cleveland Open Cup Tester