
【国外标准】 Standard Specification for Seamless and Welded Titanium and Titanium Alloy Condenser and Heat Exchanger Tubes with Enhanced Surface for Improved Heat Transfer
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
This specification covers seamless and welded titanium and titanium alloy tubing on which the external or internal surface, or both, has been modified by a cold forming process to produce an integral enhanced surface for improved heat transfer. The tubes are used in surface condensers, evaporators, heat exchangers and similar heat transfer apparatus in unfinned end diameters of a specific size. Tubes shall be furnished with unenhanced ends in the annealed condition and shall be suitable for rolling-in operations. Each tube shall be subject to a nondestructive eddy current test, and either a pneumatic or hydrostatic test.1.1 This specification covers seamless and welded titanium and titanium alloy tubing on which at least part of the external or internal surface has been enhanced by cold forming for improved heat transfer. The tubes are used in surface condensers, evaporators, heat exchangers, coils, and similar heat transfer apparatus in diameters up to and including 1 in. [25.4 mm]. The base tube wall thickness is typically at least 0.049 in. [1.245 mm] average, but lighter gauge may be negotiated with the manufacturer.1.2 Tubing purchased to this specification will typically be inserted through close-fitting holes in tubesheets, baffles, or support plates spaced along the tube length such as defined in the Tubular Exchanger Manufacturer’s Association (TEMA) Standard.2 The tube ends will also be expanded, and may then be welded. Tube may also be bent to form U-tubes or be coiled or otherwise formed, although tight radii may require unenhanced length for the bends.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the order. Combining values from the two systems may result in non-conformance. Within the text, the SI units are shown in brackets. The inch-pound units shall apply unless the “M” designation of this specification is specified in the order.1.4 The following precautionary statement pertains to the test method portion only: Section 8, 9, 10 and S1 of this specification:This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM B891/B891M-19
标准名称:
Standard Specification for Seamless and Welded Titanium and Titanium Alloy Condenser and Heat Exchanger Tubes with Enhanced Surface for Improved Heat Transfer
英文名称:
Standard Specification for Seamless and Welded Titanium and Titanium Alloy Condenser and Heat Exchanger Tubes with Enhanced Surface for Improved Heat Transfer标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM E1415-22 Standard Guide for Conducting Static Toxicity Tests With Lemna gibba G3
- ASTM E1416-23 Standard Practice for Radioscopic Examination of Weldments
- ASTM E1421-99(2021) Standard Practice for Describing and Measuring Performance of Fourier Transform Mid-Infrared (FT-MIR) Spectrometers: Level Zero and Level One Tests
- ASTM E1424-22 Standard Test Method for Determining the Rate of Air Leakage Through Exterior Windows, Skylights, Curtain Walls, and Doors Under Specified Pressure and Temperature Differences Across the Specimen
- ASTM E1426-14(2019)e1 Standard Test Method for Determining the X-Ray Elastic Constants for Use in the Measurement of Residual Stress Using X-Ray Diffraction Techniques
- ASTM E1432-19 Standard Practice for Defining and Calculating Individual and Group Sensory Thresholds from Forced-Choice Data Sets of Intermediate Size
- ASTM E1439-12(2019) Standard Guide for Conducting the Frog Embryo Teratogenesis Assay-Xenopus (FETAX)
- ASTM E1440-23 Standard Guide for Acute Toxicity Test with the Rotifer Brachionus
- ASTM E1444/E1444M-22a Standard Practice for Magnetic Particle Testing for Aerospace
- ASTM E1448/E1448M-09(2023) Standard Practice for Calibration of Systems Used for Measuring Vehicular Response to Pavement Roughness
- ASTM E1453-20 Standard Guide for Storage of Magnetic Tape Media that Contains Analog or Digital Radioscopic Data
- ASTM E1458-12(2022) Standard Test Method for Calibration Verification of Laser Diffraction Particle Sizing Instruments Using Photomask Reticles
- ASTM E1459-13(2018) Standard Guide for Physical Evidence Labeling and Related Documentation
- ASTM E1461-13(2022) Standard Test Method for Thermal Diffusivity by the Flash Method
- ASTM E1473-22 Standard Test Methods for Chemical Analysis of Nickel, Cobalt, and High-Temperature Alloys