
【国外标准】 Standard Guide for Monitoring Failure Mode Progression in Plain Bearings
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 This standard is intended as a guideline for the justification of oil test selection for monitoring plain bearing conditions. One should employ a continuous benchmarking against similar applications to ensure lessons learned are continuously being implemented.5.2 Selection of oil tests for the purpose of detecting plain bearing failure modes requires good understanding of equipment design, operating requirements, and surrounding conditions. Specifically, detailed knowledge is required of bearing design configuration, dimensional tolerances, load directions, design limitations, lubrication mechanisms, lubricant characteristics, and metallurgy of lubricated surfaces. Equipment criticality and accessibility as well as application of other monitoring techniques (for example, vibration, ultrasound, or thermal images) are also critical information in this analysis process. In addition, detailed knowledge of the lubricating oil is paramount.5.3 To properly apply the FMEA methodology, users must understand the changes encountered in the system during all operating modes, their impact on design functions, and available monitoring techniques capable of detecting these changes. To demonstrate this approach, Section 6 will provide extensive descriptions of the plain bearing failure modes, their causes, and effects.1.1 This guide covers an oil test selection process for plain bearing applications by applying the principles of Failure Mode and Effect Analysis (FMEA) as described in Guide D7874.1.2 This guide approaches oil analysis from a failure standpoint and includes both the bearing wear and fluid deterioration.1.3 This guide pertains to improving equipment reliability, reducing maintenance costs, and enhancing the condition-based maintenance program primarily for industrial machinery by applying analytical methodology to an oil analysis program for the purpose of determining the detection capability of specific failure modes.1.4 This guide reinforces the requirements for appropriate assembly and operation within the original design envelope, as well as the need for condition-based and time-based maintenance.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D7973-19
标准名称:
Standard Guide for Monitoring Failure Mode Progression in Plain Bearings
英文名称:
Standard Guide for Monitoring Failure Mode Progression in Plain Bearings标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 其它标准
- 上一篇: ASTM D7972-14(2020) Standard Test Method for Flexural Strength of Manufactured Carbon and Graphite Articles Using Three-Point Loading at Room Temperature
- 下一篇: ASTM D7974-21 Standard Test Method for Determination of Farnesane, Saturated Hydrocarbons, and Hexahydrofarnesol Content of Synthesized Iso-Paraffins (SIP) Fuel for Blending with Jet Fuel by Gas Chromatography
- 推荐标准
- ASTM D8223-19 Standard Practice for Evaluation of Fire-Retardant Treated Laminated Veneer Lumber
- ASTM D8225-19 Standard Test Method for Determination of Cracking Tolerance Index of Asphalt Mixture Using the Indirect Tensile Cracking Test at Intermediate Temperature
- ASTM D8226-21ae1 Standard Test Method for Measurement of Effects of Automotive Engine Oils on Fuel Economy of Passenger Cars and Light-Duty Trucks in Sequence VIF Spark Ignition Engine
- ASTM D8227-20 Standard Test Method for Determining the Coefficient of Friction of Synchronizer Lubricated by Mechanical Transmission Fluids (MTF) Using a High-Frequency, Linear-Oscillation (SRV) Test Machine
- ASTM D823-18(2022) Standard Practices for Producing Films of Uniform Thickness of Paint, Coatings and Related Products on Test Panels
- ASTM D8232-18 Standard Test Procedures for Measuring the Inclination of Deep Foundations
- ASTM D8236-18 Standard Practice for Preparing an Equilibrium Liquid/Vapor Sample of Live Crude Oil, Condensates, or Liquid Petroleum Products Using a Manual Piston Cylinder for Subsequent Liquid Analysis or Gas Analysis
- ASTM D8239-23 Standard Specification for Performance-Graded Asphalt Binder Using the Multiple Stress Creep and Recovery (MSCR) Test
- ASTM D8240-22e1 Standard Specification for Less-Flammable Synthetic Ester Liquids Used in Electrical Apparatus
- ASTM D8241/D8241M-19 Standard Tables of Body Measurements for Young Men Type, Size Range 32 – 48
- ASTM D8243-19 Standard Test Method for Determination of APS Reductase to Estimate Sulfate Reducing Bacterial Bioburdens in Water – Enzyme-Linked Immunosorbent Assay Method
- ASTM D8247-19 Standard Test Method for Determination of Total Fluorine and Total Chlorine in Coal by Oxidative Pyrohydrolytic Combustion Followed by Ion Chromatography Detection
- ASTM D8252-23 Standard Test Method for Vanadium and Nickel in Crude and Residual Oil by X-ray Spectrometry
- ASTM D8253-21 Standard Test Method for Determination of the Asphaltene Solvency Properties of Bitumen, Crude Oil, Condensate and/or Related Products for the Purpose of Calculating Stability, Compatibility for Blending, Fouling, and Processibility (Manual Microscopy
- ASTM D8254-19 Standard Test Method for Flash and Fire Points of Asphalt by Cleveland Open Cup Tester