
【国外标准】 Standard Test Method for Application and Analysis of Solid State Track Recorder (SSTR) Monitors for Reactor Surveillance
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 The SSTR method provides for the measurement of absolute-fission density per unit mass. Absolute-neutron fluence can then be inferred from these SSTR-based absolute fission rate observations if an appropriate neutron spectrum average fission cross section is known. This method is highly discriminatory against other components of the in-core radiation field. Gamma rays, beta rays, and other lightly ionizing particles do not produce observable tracks in appropriate LWR SSTR candidate materials. However, photofission can contribute to the observed fission track density and should therefore be accounted for when nonnegligible. For a more detailed discussion of photofission effects, see 14.4.4.2 In this test method, SSTRs are placed in surface contact with fissionable deposits and record neutron-induced fission fragments. By variation of the surface mass density (μg/cm 2) of the fissionable deposit as well as employing the allowable range of track densities (from roughly 1 event/cm2 up to 105 events/cm2 for manual scanning), a range of total fluence sensitivity covering at least 16 orders of magnitude is possible, from roughly 102 n/cm 2 up to 5 × 10 18 n/cm2. The allowable range of fission track densities is broader than the track density range for high accuracy manual scanning work with optical microscopy cited in 1.2. In particular, automated and semi-automated methods exist that broaden the customary track density range available with manual optical microscopy. In this broader track density region, effects of reduced counting statistics at very low track densities and track pile-up corrections at very high track densities can present inherent limitations for work of high accuracy. Automated scanning techniques are described in Section 11.4.3 For dosimetry applications, different energy regions of the neutron spectrum can be selectively emphasized by changing the nuclide used for the fission deposit.4.4 It is possible to use SSTRs directly for neutron dosimetry as described in 4.1 or to obtain a composite neutron detection efficiency by exposure in a benchmark neutron field. The fluence and spectrum-averaged cross section in this benchmark field must be known. Furthermore, application in other neutron fields may require adjustments due to spectral deviation from the benchmark field spectrum used for calibration. In any event, it must be stressed that the SSTR-fission density measurements can be carried out completely independent of any cross-section standards (6). Therefore, for certain applications, the independent nature of this test method should not be compromised. On the other hand, many practical applications exist wherein this factor is of no consequence so that benchmark field calibration would be entirely appropriate.1.1 This test method describes the use of solid-state track recorders (SSTRs) for neutron dosimetry in light-water reactor (LWR) applications. These applications extend from low neutron fluence to high neutron fluence, including high power pressure vessel surveillance and test reactor irradiations as well as low power benchmark field measurement. (1)2 Special attention is given to the use of state-of-the-art manual and automated track counting methods to attain high absolute accuracies. In-situ dosimetry in actual high fluence-high temperature LWR applications is emphasized.1.2 This test method includes SSTR analysis by both manual and automated methods. To attain a desired accuracy, the track scanning method selected places limits on the allowable track density. Typically, good results are obtained in the range of 5 to 800 000 tracks/cm2 and accurate results at higher track densities have been demonstrated for some cases. (2) Track density and other factors place limits on the applicability of the SSTR method at high fluences. Special care must be exerted when measuring neutron fluences (E>1MeV) above 1016 n/cm2 (3) .1.3 Low fluence and high fluence limitations exist. These limitations are discussed in detail in Sections 13 and 14 and in Refs (3-5).1.4 SSTR observations provide time-integrated reaction rates. Therefore, SSTRs are truly passive-fluence detectors. They provide permanent records of dosimetry experiments without the need for time-dependent corrections, such as decay factors that arise with radiometric monitors.1.5 Since SSTRs provide a spatial record of the time-integrated reaction rate at a microscopic level, they can be used for “fine-structure” measurements. For example, spatial distributions of isotopic fission rates can be obtained at very high resolution with SSTRs.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM E854-19
标准名称:
Standard Test Method for Application and Analysis of Solid State Track Recorder (SSTR) Monitors for Reactor Surveillance
英文名称:
Standard Test Method for Application and Analysis of Solid State Track Recorder (SSTR) Monitors for Reactor Surveillance标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- AS/NZS 1462.19(Int):1999 Methods of test for plastics pipes and fittings C-Ring test for fracture toughness of PVC pipes
- AS/NZS 2111.19.2:1996 (R2016)/Amdt 1:1998 Textile floor coverings - Tests and measurements - Colourfastness tests - Shampoo solution
- AS/NZS 4456.19:2003/Amdt 1:2004 Masonry units, segmental pavers and flags - Methods of test Determining of bow
- AS/NZS 60745.2.19:2011 Hand-held motor-operated electric tools - Safety Particular requirements for jointers
- ASTM 51026-23 Standard Practice for Using the Fricke Dosimetry System
- ASTM 52303-24 Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities
- ASTM A1-00(2018) Standard Specification for Carbon Steel Tee Rails
- ASTM A1000/A1000M-17(2023) Standard Specification for Steel Wire, Carbon and Alloy Specialty Spring Quality
- ASTM A1001-18 Standard Specification for High-Strength Steel Castings in Heavy Sections
- ASTM A1002-16(2020) Standard Specification for Castings, Nickel-Aluminum Ordered Alloy
- ASTM A1004/A1004M-99(2018) Standard Practice for Establishing Conformance to the Minimum Expected Corrosion Characteristics of Metallic, Painted-Metallic, and Nonmetallic-Coated Steel Sheet Intended for Use as Cold Formed Framing Members
- ASTM A1009-18 Standard Specification for Soft Magnetic MnZn Ferrite Core Materials for Transformer and Inductor Applications
- ASTM A101-04(2019) Standard Specification for Ferrochromium
- ASTM A1010/A1010M-13(2018) Standard Specification for Higher-Strength Martensitic Stainless Steel Plate, Sheet, and Strip
- ASTM A1012-10(2021) Standard Specification for Seamless and Welded Ferritic, Austenitic and Duplex Alloy Steel Condenser and Heat Exchanger Tubes With Integral Fins