- 您的位置:
- 中国标准在线服务网 >>
- 全部标准分类 >>
- 国外标准 >>
- ASTM >>
- ASTM E561-23 Standard Test Method for KR Curve Determination

【国外标准】 Standard Test Method for KR Curve Determination
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 The KR curve characterizes the resistance to fracture of materials during slow, stable crack extension and results from the growth of the plastic zone ahead of the crack as it extends from a fatigue precrack or sharp notch. It provides a record of the toughness development as a crack is driven stably under increasing applied stress intensity factor K. For a given material, KR curves are dependent upon specimen thickness, temperature, and strain rate. The amount of valid KR data generated in the test depends on the specimen type, size, method of loading, and, to a lesser extent, testing machine characteristics.5.2 For an untested geometry, the KR curve can be matched with the applied-K curves (crack driving curves) to estimate the degree of stable crack extension and the conditions necessary to cause unstable crack propagation (2). In making this estimate, KR curves are regarded as being independent of initial crack size ao and the specimen configuration in which they are developed. For a given material, material thickness, and test temperature, KR curves appear to be a function of only the effective crack extension Δae (3).5.2.1 To predict crack behavior and instability in a component, a family of applied-K curves is generated by calculating K as a function of crack size for the component using a series of force, displacement, or combined loading conditions. The KR curve may be superimposed on the family of applied-K curves as shown in Fig. 1, with the origin of the KR curve coinciding with the assumed initial crack size ao. The intersection of the applied-K curves with the KR curve shows the expected effective stable crack extension for each loading condition. The applied-K curve that develops tangency with the KR curve defines the critical loading condition that will cause the onset of unstable fracture under the loading conditions used to develop the applied-K curves.FIG. 1 Schematic Representation of KR curve and Applied K Curves to Predict Instability; Kc, P3, ac, Corresponding to an Initial Crack Size, ao5.2.2 Conversely, the KR curve can be shifted left or right in Fig. 1 to bring it into tangency with applied-K curve to determine the initial crack size that would cause crack instability under that loading condition.5.3 If the K-gradient (slope of the applied-K curve) of the specimen chosen to develop the KR curve has negative characteristics (see Note 1), as in a displacement-controlled test condition, it may be possible to drive the crack until a maximum or plateau toughness level is reached (4, 5, 6). When a specimen with positive K-gradient characteristics (see Note 2) is used, the extent of the KR curve which can be developed is terminated when the crack becomes unstable.NOTE 1: Fixed displacement in crack-line-loaded specimens results in a decrease of K with crack extension.NOTE 2: With force control, K usually increases with crack extension, and instability will occur at maximum force.1.1 This test method covers the determination of the resistance to fracture of metallic materials under Mode I loading at static rates using either of the following notched and precracked specimens: the middle-cracked tension M(T) specimen or the compact tension C(T) specimen. A KR curve is a continuous record of toughness development (resistance to crack extension) in terms of KR plotted against crack extension in the specimen as a crack is driven under an increasing stress intensity factor, K. (1)21.2 Materials that can be tested for KR curve development are not limited by strength, thickness, or toughness, so long as specimens are of sufficient size to remain predominantly elastic to the effective crack extension value of interest.1.3 Specimens of standard proportions are required, but size is variable, to be adjusted for yield strength and toughness of the materials.1.4 Only two of the many possible specimen types that could be used to develop KR curves are covered in this method.1.5 The test is applicable to conditions where a material exhibits slow, stable crack extension under increasing crack driving force, which may exist in relatively tough materials under plane stress crack tip conditions.1.6 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM E561-23
标准名称:
Standard Test Method for KR Curve Determination
英文名称:
Standard Test Method for KR Curve Determination标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- AS 1038.23-2002 (R2013) Coal and coke - Analysis and testing Higher rank coal and coke - Carbonate carbon
- AS 1774.23.1-1992 Refractories and refractory materials - Physical test methods Abradability index - Oblique method
- AS 1807.23-1989 Cleanrooms, workstations and safety cabinets - Methods of test Determination of intensity of radiation from germicidal ultraviolet lamps
- AS/NZS 1462.23:1997 Methods of test for plastics pipes and fittings Method for determination of ring flexibility
- AS/NZS 3350.2.23:2001/Amdt 2:2004 Safety of household and similar electrical appliances - Particular requirements for appliances for skin and hair care
- AS/NZS 3350.2.23:2001/Amdt 4:2008 Safety of household and similar electrical appliances Particular requirements for skin or hair care
- AS/NZS 4266.23:1996 Reconstituted wood-based panels - Methods of test Determination of resistance to steam
- AS/NZS 61558.2.23:2001 Safety of power transformers, power supply units and similar devices - Particular requirements for transformers for construction sites (IEC 61558-2-23:2000, MOD)
- AS/NZS 61558.2.23:2011 (IEC TEXT)/Amdt 1:2012 Safety of Power Transformers, Power Supplies, Reactors and combinations thereof Particular requirements and tests for transformers and power supply units for construction sites
- AS/NZS 61558.2.23:2011/Amdt 1:2012 Safety of Power Transformers, Power Supplies, Reactors and combinations thereof Particular requirements and tests for transformers and power supply units for construction sites
- ASTM 51026-23 Standard Practice for Using the Fricke Dosimetry System
- ASTM 52303-24 Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities
- ASTM A1-00(2018) Standard Specification for Carbon Steel Tee Rails
- ASTM A1000/A1000M-17(2023) Standard Specification for Steel Wire, Carbon and Alloy Specialty Spring Quality
- ASTM A1001-18 Standard Specification for High-Strength Steel Castings in Heavy Sections