
【国外标准】 Standard Test Method for Rotary Wheel Testing (RWT) of Compacted Asphalt Mixtures
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 The test method is developed for determining the rutting and moisture susceptibility of asphalt mixtures. The rutting and moisture damage resistance can help differentiate mixtures whose service life might be compromised by permanent deformation or by moisture damage. The test method is valid for specimens that are tested at temperatures of 60 ± 0.5 °C [140 ± 0.9 °F]. Test specimen geometry is a diameter of 150 mm [5.9 in.] and a height of 115 ± 5 mm [4.5 ± 0.2 in.]. Specimens are prepared using a Superpave gyratory compactor.NOTE 9: The quality of the results produced by this standard are dependent on the competence of the personnel performing the procedure and the capability, calibration, and maintenance of the equipment used. Agencies that meet the criteria of Specification D3666 are generally considered capable of competent and objective testing, sampling, inspection, etc. Users of this standard are cautioned that compliance with Specification D3666 alone does not completely ensure reliable results. Reliable results depend on many factors; following the suggestions of Specification D3666 or some similar acceptable guideline provides a means of evaluating and controlling some of those factors.1.1 This test method describes a procedure for testing the rutting and moisture susceptibility of asphalt specimens using the Rotary Wheel Tester (RWT). Superpave Gyratory Compactor (SGC) specimens (Test Method D6925) are wrapped, conditioned, submerged in water, and confined between three metal wheels in continuous synchronized rotation with each wheel applying a fixed load around the periphery of the specimen. The system records the number of load cycles applied to the specimen, the deformation of the specimen (rut depth), the loading rate, the temperature of the water, and Sigma, which is an indication of specimen roundness.1.2 The test method is used to determine the premature rutting susceptibility of asphalt mixtures by measuring rut depth as a function of number of load cycles throughout the test.1.3 This test method also measures the potential for moisture damage effects because the specimens are submerged in temperature-controlled water during preconditioning and for the duration of the test.1.4 The parameters of the test are shown in Table 1. See an example of the test parameters used in Appendix X1.NOTE 1: This test uses a typical specimen produced by a Superpave gyratory compactor.NOTE 2: The ruggedness study identified air void content as the most influential factor evaluated and recommended a tolerance of ±0.25 % to minimize the effect of air void content on the test results. The precision study evaluated three asphalt mixtures with specimen air void contents ranging from 2.87 % to 3.23 %, from 4.28 % to 4.64 %, and from 5.77 % to 6.19 %. Precision statements covering the air void content ranges of 2.75 % to 4.75 % and 5.75 % to 6.25 % can be found in Section 10. Lemke and Bahia (2019) found that an asphalt mixture with 7 % air void content was more susceptible to rutting than a mixture with 3 % air void content and that the test results for the 7 % AV mixture did not differentiate between control factors such as test temperature and mixture source like the mixture with 3 % air void content did.NOTE 3: The University of Wisconsin at Madison Modified Asphalt Research Center (2017) reported that the City of LA selected the test temperature of 60 °C [140 °F] because “(1) it approximates the observed high average temperature of most pavements, (2) it is close to the high temperature performance grade classification of the asphalt binder used in most local applications, (3) it allows a test to be performed in an accelerated time frame (about 2 h excluding preconditioning time), and (4) research on rut testing has shown [that] the asphalt binder seems to have the most control over the test results at lower test temperatures.” The ruggedness study was completed at 60 °C [140 °F] using PG 64-10 with 50 % RAC asphalt mixture. The precision study was completed at 60 °C [140 °F] using PG 64-10 with 50 % RAC asphalt mixture for two of the mixtures evaluated and using PG 76-22 for the third mixture considered. One may wish to consider lower test temperatures because Lemke and Bahia (2019) reported reducing the test temperature from 60 °C [140 °F] to 52 °C [125.6 °F] when testing PG 58S-28 and PG 58H-28 asphalt because of premature failure. Note 8 includes a suggestion for selecting an alternative test temperature based on the binder if one chooses to do so.NOTE 4: The University of Wisconsin at Madison Modified Asphalt Research Center (2017) reported that the City of LA selected 6900 load cycles as the maximum load cycles because “initial observations from tests showed that most samples tested showed their performance well before these values (6900 load cycles and 6.0 mm [0.24 in.]) were attained ... while those that exhibited low rut depth in the field and no moisture susceptibility showed test result curves that behaved as asymptotes to their initial creep slope until the maximum number of cycles (30 000 cycles) of the machine was attained.” 6900 load cycles was used in both the ruggedness and precision work as well. The machine has an allowable range of 300 to 30 000 load cycles.NOTE 5: The University of Wisconsin at Madison Modified Asphalt Research Center (2017) reported that the City of LA selected 6.0 mm [0.24 in.] as the maximum rut depth because “initial observations from tests showed that most samples tested showed their performance well before these values (6900 load cycles and 6.0 mm [0.24 in.]) were attained ... while those that exhibited low rut depth in the field and no moisture susceptibility showed test result curves that behaved as asymptotes to their initial creep slope until the maximum number of cycles (30 000 cycles) of the machine was attained.” 6.0 mm [0.24 in.] was used in both the ruggedness and precision work as well.NOTE 6: The University of Wisconsin at Madison Modified Asphalt Research Center (2017) reported that the City of LA selected 70 CPM as the loading rate because that is what its RWT was set at by the factory. 70 CPM was used in both the ruggedness and precision work as well. The machine has an allowable range of 60 to 90 CPM.NOTE 7: The University of Wisconsin at Madison Modified Asphalt Research Center (2017) reported that the City of LA selected an applied load of 334 N [75 lb] because that is what its RWT was set at by the factory. 334 N [75 lb] was used in both the ruggedness and precision work as well. The machine has an allowable range of 334 to 489 N [75 to 110 lb] in 22-N [5-lb] increments. Applied loads of greater than 334 N [75 lb] are not recommended based on experience.1.5 Criteria for the evaluation and interpretation of test results shall be developed for local conditions and material characteristics. Appendix X1 shows an example of how test results are used and interpreted.1.6 The text of this test method references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the test method.1.7 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D8259/D8259M-21
标准名称:
Standard Test Method for Rotary Wheel Testing (RWT) of Compacted Asphalt Mixtures
英文名称:
Standard Test Method for Rotary Wheel Testing (RWT) of Compacted Asphalt Mixtures标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM E2102-21 Standard Test Method for Measurement of Mass Loss and Ignitability for Screening Purposes Using a Conical Radiant Heater
- ASTM E2103/E2103M-19 Standard Classification for Bridge Elements—UNIFORMAT II
- ASTM E2104-22 Standard Practice for Radiographic Examination of Advanced Aero and Turbine Materials and Components
- ASTM E2106-00(2019) Standard Practice for General Techniques of Liquid Chromatography-Infrared (LC/IR) and Size Exclusion Chromatography-Infrared (SEC/IR) Analyses
- ASTM E2107-20 Standard Practice for Environmental Regulatory Compliance Audits
- ASTM E2108-16 Standard Practice for Calibration of the Electron Binding-Energy Scale of an X-Ray Photoelectron Spectrometer
- ASTM E2109-01(2021) Standard Test Methods for Determining Area Percentage Porosity in Thermal Sprayed Coatings
- ASTM E211-82(2022) Standard Specification for Cover Glasses and Glass Slides for Use in Microscopy
- ASTM E2110-17 Standard Terminology for Exterior Insulation and Finish Systems (EIFS)
- ASTM E2112-23 Standard Practice for Installation of Exterior Windows, Doors and Skylights
- ASTM E2113-23 Standard Test Method for Length Change Calibration of Thermomechanical Analyzers
- ASTM E2114-23 Standard Terminology for Sustainability
- ASTM E2115-22 Standard Guide for Conducting Lead Hazard Assessments of Dwellings and of Other Child-Occupied Facilities
- ASTM E2121-21 Standard Practice for Installing Radon Mitigation Systems in Existing Low-Rise Residential Buildings
- ASTM E2122-22 Standard Guide for Conducting In-situ Field Bioassays With Caged Bivalves