微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 The BWC, as determined by this test method, is a measure of the ability of an activated carbon to adsorb and desorb butane from dry air under specified conditions. It is useful for quality control and evaluation of granular activated carbons that are used in applications where the adsorption of butane and desorption with dry air are of interest. The BWC can also provide a relative measure of the effectiveness of the tested activated carbons on other adsorbates.5.2 The butane activity and retentivity can also be determined under the conditions of the test. The butane activity is an indication of the micropore volume of the activated carbon sample. The butane retentivity is an indication of the pore structure of the activated carbon sample.1.1 This test method covers the determination of the butane working capacity (BWC) of new granular activated carbon. The BWC is defined as the difference between the butane adsorbed at saturation and the butane retained per unit volume of carbon after a specified purge. The test method also produces a butane activity value that is defined as the total amount of butane adsorbed on the carbon sample and is expressed as a mass of butane per unit weight or volume of carbon.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For a specific hazard statement, see 7.1.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The metal loss from corrosion is directly related to the increase in electrical resistance of the target due to the decrease in conductive cross-sectional area.5.2 The relationship between resistance increase of metallic targets used in this test method and the amount of metal loss as reported by a uniform loss in thickness has not been determined.5.3 This test method is used to determine the corrosive effect of combustion products from burning electrical insulations or coverings or their constituent materials or components. Corrosion is determined by the reduction of thickness of the metal on standardized targets, as measured by electrical resistance. These targets are not necessarily representative of the intended end use.5.4 This test method is intended for use in electrical insulations or coverings material and product evaluations, for additional data to assist in design of electrical insulations or coverings products, or for development and research of electrical insulations or coverings products.5.5 A value of the initial test heat flux is selected to be relevant to the fire scenario being investigated (up to 100 kW/m2). Additional information for testing is given in A1.2.3.1.1 This fire-test-response standard measures the corrosive effect by loss of metal from the combustion products of materials, components, or products.1.2 This test method provides corrosion results of product and material specimens limited to a maximum size of 100 by 100 mm in area and 50 mm thick.1.3 Additional information regarding the targets, the test conditions, and test limitations is provided in Annex A1.1.4 The results of this test method have not been investigated with respect to correlation to actual fires.1.5 An ISO standard exists, as developed by ISO TC 61 (Plastics), subcommittee 4 (on burning behavior), which is technically very similar to this test method and is designated ISO 11907-4.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. (See IEEE/ASTM SI10.)1.7 This standard measures and describes the response of materials, products, or assemblies to heat and flame under controlled conditions, but does not by itself incorporate all factors required for fire hazard or fire risk assessment of the materials, products, or assemblies under actual fire conditions.1.8 Fire testing is inherently hazardous. Adequate safeguards for personnel and property shall be employed in conducting these tests.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 7.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 This guide provides guidance for the characterization of coal fly ash or clean coal combustion fly ash for potential uses in which absorption, cementitious activity, pozzolanic activity, pH adjustment, heat rise, or stabilization and solidification properties may be desired.1.1 This guide recommends standards for the characterization of fly ash from the combustion of coal, fly ash from coal combusted in the presence of alkaline materials, and fly ash from combusted coal in which the flue gases have been treated with alkaline materials in the presence of the fly ash.1.2 This guide provides recommended and optional test methods for fly ash evaluation. Acceptance criteria can be negotiated between the producer and the user according to the potential end use.1.3 The coal fly ash and clean coal combustion fly ash of this guide do not include the following:1.3.1 Dusts from kilns producing products such as lime, portland cement, activated clays, etc.;1.3.2 By-products of flue gas desulflurization that are not collected with the primary fly ash removal equipment such as the baghouse or electrostatic precipitator; and1.3.3 Fly ash or other combustion products derived from the burning of waste; municipal, industrial, or commercial garbage; sewage sludge or other refuse, or both; derived fuels; wood; wood waste products; rice hulls; agriculture waste; or other non-coal fuels or other such fuels blended with coal, or some combination thereof.1.4 Fly ash may contain some trace elements that may affect performance or potential end use.1.5 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The displacement transducer plays an important role in geotechnical applications to measure change in dimensions of specimens.5.2 The displacement transducer must be calibrated/verified for use in the laboratory to ensure reliable conversions of the sensor's electrical output to engineering units.5.3 The displacement transducer should be calibrated/verified before initial use, at least annually thereafter, after any change in the electronic configuration that employs the sensor, after any significant change in test conditions using the transducer that differ from conditions during the last calibration/verification, and after any physical action on the transducer that might affect its response.5.4 Displacement transducer generally has a working range within which voltage output is linearly proportional to displacement of the transducer. This procedure is applicable to the linear range of the transducer. Recommended practice is to use the displacement transducer only within its linear working range.NOTE 1: Verification as in Practices E2309/E2309M should not be confused with calibration1.1 This practice outlines the procedure for calibration/verification of displacement transducers and their readout systems for geotechnical purposes. It covers any transducer used to measure displacement, which gives an electrical output that is linearly proportional to displacement. This includes linear variable displacement transducers (LVDTs), linear displacement transducers (LDTs) and linear strain transducers (LSTs).1.2 This calibration/verification procedure is used to determine the relationship between output of the transducer and its readout system and change in length. This relationship is used to convert readings from the transducer readout system into engineering units.1.3 This calibration/verification procedure also is used to determine the accuracy of the transducer and its readout system over the range of its use to compare with the manufacturer’s specifications for the instrument and the suitability of the instrument for a specific application.1.4 Units—The values stated in either SI units or inch-pound units given in brackets are to be regarded separately as the standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combination values from the two systems may result in non-conformance with standard.1.5 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026 unless superseded by this standard.1.5.1 The procedures used to specify how data are collected, recorded or calculated in this standard are regarded as the industry standard. In addition they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any consideration for the user’s objectives; it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analytical methods for engineering design.1.6 This practice offers a set of instructions for performing one or more specific operations. This standard cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this practice may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project’s many unique aspects. The word “standard” in the title of this document means only that the document has been approved through the ASTM consensus process.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The soil-lime pH test is performed as a test to indicate the soil-lime proportion needed to maintain the elevated pH necessary for sustaining the reactions required to stabilize a soil. The test derives from Eades and Grim.45.2 Performance tests are normally conducted in a laboratory to verify the results of this test method.5.3 This test method will not provide reliable information relative to the potential reactivity of a particular soil, nor will it provide information on the magnitude of increased strength to be realized upon treatment of this soil with the indicated percentage of lime.5.4 This test method can be used to estimate the percentage of lime as hydrated lime or quicklime needed to produce a lime stabilized soil. Common candidate soils contain clay minerals and have a Plasticity Index ≥10.5.5 Agricultural lime (crushed limestone) will not stabilize soil.NOTE 2: The quality of the result produced by this standard is dependent on the competence of the personnel performing it and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This test method provides a means for estimating the soil-lime proportion requirement for stabilization of a soil. This test method is performed on soil passing the 425μm (No. 40) sieve. The optimum soil-lime proportion for soil stabilization is determined by tests of specific characteristics of stabilized soil such as unconfined compressive strength or plasticity index.1.2 Some highly alkaline by-products (lime kiln dust, cement kiln dust, carbide lime, and so forth) have been successfully used to stabilize soil. This test method is not intended for these materials and any such product would need to be tested for specific characteristics as indicated in 1.1.1.3 This test method is used to determine the percentage of lime that results in a soil-lime pH of approximately 12.4.NOTE 1: Under ideal laboratory conditions of 25°C and sea level elevation, the pH of the lime-soil-water solution should be 12.4.1.4 Lime is not an effective stabilizing agent for all soils. Some soil components such as sulfates, phosphates, organics, and iron can adversely affect soil-lime reactions and may produce erroneous results using this test method.1.5 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.6.1 The procedures used to specify how data are collected/ recorded and calculated in the standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of these test methods to consider significant digits used in analysis for engineering data.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 Definitions in this standard are to be regarded as the correct ones for terms found in other ASTM standards of Committee D18. Certain terms may be found in more than one standard issued under the jurisdiction of this committee and many of these terms have been placed in this standard.3.2 Terms that are defined in some textbooks may differ slightly from those in this terminology standard. Definitions in this terminology standard are to be regarded as correct for ASTM usage.3.3 See Appendix X1 for References.3.4 Definitions marked with (ISRM) are included for the convenience of the user and were taken directly from the International Society for Rock Mechanics (see X1.3).3.5 A number of the definitions include symbols. The symbols appear in italics immediately after the name of the term.3.5.1 No significance should be placed on the order in which the symbols are presented where two or more are given for an individual term.3.5.2 The symbols presented are examples; therefore, other symbols are acceptable.3.5.3 See Appendix X2 for ISRM Symbols.3.6 A number of definitions indicate the units of measurements in brackets and which follow the symbol(s) if given. The applicable units are indicated by italic capital letters, as follows: D—Dimensionless F—Force, such as pound-force, ton-force, newton L—Length, such as inch, foot, millimeter, and meter4 M—Mass, such as kilogram, gram T—Time, such as second, minute3.6.1 Positive exponents designate multiples in the numerator. Negative exponents designate multiples in the denominator. Degrees of angle are indicated as “degrees.”3.6.2 Expressing the units either in SI or the inch-pound system has been purposely omitted in order to leave the choice of the system and specific unit to the engineer and the particular application, for example: FL−2—may be expressed in pounds-force per square inch, kilopascals, tons per square foot, etc. LT−1—may be expressed in feet per minute, meters per second, etc.3.7 Where synonymous terms are cross-referenced, the definition is usually included with the earlier term alphabetically. Where this is not the case, the later term is the more significant.3.8 Grouping of Definitions and Listing of Related Terms—To aide users in finding terms, this terminology standard provides grouping of definitions and listing of related terms.3.8.1 Groupings—These groupings are presented in Table 1A.TABLE 1A Listing of Groupings*AquiferCoefficients: EarthConsolidationD18.24DensityHeadMeasurementPrincipal PlaneSpecific GravityStressUnit WeightWave*Groupings can be editorially added or removed by the subcommittee chair as they are changed within D653.3.8.1.1 Sub-Term Groupings—These groupings are presented in Table 1B.TABLE 1B Listing of Sub-Term Groupings*ASTM cement typeshorizon or soil horizonmoisture equivalentplastic equilibriumshear failure or failure by rupturesite investigationsoil structure*Groupings can be editorially added or removed by the subcommittee chair as they are changed within D653.3.8.2 Listings (see Appendix X3)—The listing of related terms is given in Table 1C. This listing may include all of the terms defined within standards under the jurisdiction of a specific technical subcommittee, such as D18.14, D18.24, D18.25, and D18.26.TABLE 1C Listing of Related Terms*compactiondensityeffectivespecific gravityunit weight*Listings of related terms can be editorially added or removed by the subcommittee chair as they are changed within D653.1.1 These definitions apply to many terms found in the Terminology section of standards of ASTM Committee D18.1.2 This terminology standard defines terms related to soil, rock, and contained fluids found in the various sections of standards under the jurisdiction of ASTM Committee D18.1.3 Definitions of terms relating to frozen soils are contained in Terminology D7099.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 918元 / 折扣价: 781 加购物车

在线阅读 收 藏

5.1 Certain sandwich panel analyses require the Poisson's ratio of the honeycomb core. It is not possible to measure the honeycomb's Poisson's ratio by conventional methods.5.2 This test method provides a standard method of determining the Poisson’s ratio of honeycomb core materials for design properties, material specifications, research and development applications, and quality assurance.5.3 Factors that influence the Poisson’s ratio of honeycomb core materials and shall therefore be reported include the following: core material, methods of material fabrication, core geometry, core thickness, core thickness uniformity, cell wall thickness, specimen geometry, specimen preparation, and specimen conditioning.1.1 This test method covers the determination of the sandwich honeycomb core Poisson's ratio from the anticlastic curvature radii; see Fig. 1.FIG. 1 Anticlastic Curvature1.2 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.2.1 Within the text, the inch-pound units are shown in brackets.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 In this test method, a compacted sample is vacuum sealed inside a plastic bag. The density of the sample, SG1, is calculated using a water displacement method, with the sample sealed. With the sample still in water, the bag is cut open. Since the sample is under vacuum and the air voids are evacuated, water will rush in to fill all the water-accessible air voids in the compacted sample. With the saturated weight of sample known, an apparent maximum density, SG2, can be calculated. The difference between SG2 and SG1 is the measure of the amount of water that has penetrated the compacted sample. This difference can be used to determine the fraction of total number of voids that are accessible to water, effective percent porosity or percent effective air voids.4.2 The results obtained from this method can be used to determine the percentage of total air voids in a compacted sample that can be filled with water through surface or interconnected paths within the sample. In general, effective percent porosity should be less than total percent air voids.NOTE 1: The quality of the results produced by this standard are dependent on the competence of the personnel performing the procedure and the capability, calibration, and maintenance of the equipment used. Agencies that meet the criteria of Specification D3666 are generally considered capable of competent and objective testing, sampling, inspection, etc. Users of this standard are cautioned that compliance with Specification D3666 alone does not completely ensure reliable results. Reliable results depend on many factors; following the suggestions of Specification D3666 or some similar acceptable guideline provides a means of evaluating and controlling some of those factors.4.3 This method can be used for 100 mm [4 in.] and 150 mm [6 in.] diameter cylindrical samples and cubical samples.1.1 This test method covers the determination of effective porosity or effective air voids of compacted mixtures by the use of a vacuum sealing method.1.2 This method can be used for compacted field and laboratory asphalt mixture samples, as well as other compacted samples with well-defined geometrical shapes, such as concrete cylinders, cored rocks, and metal samples.1.3 The results of this test method can be used to determine the degree of interconnectivity of air voids within a sample and can be correlated to permeability of compacted asphalt mixture samples.1.4 A multi-laboratory precision and bias statement for this standard has not been developed at this time. Therefore, this standard should not be used for acceptance or rejection of a material for purchasing purposes.1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.6 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Sandwich honeycomb core materials are used extensively in energy absorption applications, due to their ability to sustain compressive loading while being crushed. Proper design of energy absorption devices utilizing sandwich honeycomb core materials requires knowledge of the compressive crush stress and crush stroke properties of the honeycomb core material.5.2 The procedures contained within this test method are intended to assess the crush stress and crush stroke properties of the sandwich honeycomb core material under static compressive loading. The dynamic crush stress of the honeycomb core material may vary from that measured under static loading, depending upon factors such as honeycomb core material thickness, core material density, impact velocity, etc.5.3 This test method provides a standard method of obtaining the compressive crush stress and crush stroke for sandwich honeycomb core material structural design properties, material specifications, research and development applications, and quality assurance.5.4 This test method is not intended for use in crush testing of stabilized honeycomb core materials (for which the facing plane surfaces of the honeycomb core material are dipped in resin to resist local crushing) or sandwich specimens (for which face sheets are bonded to the honeycomb core material).5.5 Factors that influence the compressive crush stress and crush stroke and shall therefore be reported include the following: honeycomb core material, methods of material fabrication, core material geometry (nominal cell size), core material density, specimen geometry, specimen preparation, specimen conditioning, environment of testing, specimen alignment, pre-crush procedure, pre-crush depth, loading procedure, and speed of testing.1.1 This test method determines the static energy absorption properties (compressive crush stress and crush stroke) of honeycomb sandwich core materials. These properties are usually determined for design purposes in a direction normal to the plane of the face sheets (also referred to as the facing plane) as the honeycomb core material would be placed in a structural sandwich construction.1.2 Permissible core materials are limited to those in honeycomb form.1.3 This test method is not intended for use in crush testing of stabilized honeycomb core materials (for which the facing plane surfaces of the honeycomb core material are dipped in resin to resist local crushing) or sandwich specimens (for which facings are bonded to the honeycomb core material).1.4 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.4.1 Within the text, the inch-pound units are shown in brackets.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method for transverse shear strength is intended for use in laboratory tests in which the principal variable is the size or type of FRP bars. The test may be used for smooth round rods or on bars with a textured or undulating surface added to promote bond of the bars to Portland cement concrete. This test method establishes values of transverse shear strength for material specifications, quality control, quality assurance, research and development, and may also be used for structural design purposes.5.2 Experience with this test method and the accompanying fixture is primarily with smooth rods and textured bars with diameters ranging from 6 mm to 25 mm [0.25 in. to 1 in.]. The method may be used for rods or bars of larger diameters, but the overall geometry of the test fixture may need to be increased.1.1 This test method specifies the test requirements for (FRP) composite smooth round rods and textured bars for determining the transverse shear strength via a double shear fixture. FRP rods and bars are often loaded in transverse shear when these elements are used as dowels in concrete pavements, as stirrups in concrete beams, or as shear reinforcements in glued-laminated wood beams, for example.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.2.1 Within the text, the inch-pound units are shown in brackets.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 Plasticizer migration is detrimental to many adhesives, including hot melts, which could be possibly used in conjunction with PVC backed flooring materials, whether resilient or textile, broadloom, tile or plank. This practice can be used as an indicator to determine if plasticizers in the flooring material are compatible with proposed installation adhesive(s).1.1 This standard will provide a qualitative means to determine the potential effects of plasticizers contained within polyvinyl chloride (PVC) floor covering materials on a specific adhesive.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
ASTM D816-06(2023) Standard Test Methods for Rubber Cements Active 发布日期 :  1970-01-01 实施日期 : 

4.1 These tests are used as a means of classifying, evaluating, and controlling cement compositions. Adhesion strength in tension, shear, and in a peeling mode are necessary where rubber materials are used in various engineering applications where forces are encountered both normal to the adhesion plane and parallel to the plane of the adhesive interface.1.1 These test methods cover tests to measure the properties of adhesives, commonly called rubber cements, that may be applied in plastic or fluid form and that are manufactured from natural rubber, reclaimed rubber, synthetic elastomers, or combinations of these materials. All tests are not to be considered as applicable to a particular type of adhesive nor is every test included that may be applicable to a particular type. The tests do provide standard procedures for evaluating the more important properties of the usual adhesives ordinarily classed as rubber cements.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The determination of WPPO composition is useful in optimization of process variables, diagnosing unit performance, and in evaluating the effect of changes in waste plastic composition on WPPO performance properties.5.1.1 Aromatics and olefin hydrocarbon type analysis, including sub-classes, may be useful for evaluating suitability of WPPO as a feedstock for further processing.1.1 This test method covers a standard procedure for the determination of hydrocarbon types (saturates, olefins, styrenes, aromatics and polyaromatics) of waste plastic process oil (WPPO) from chemical or thermal processes using gas chromatography and vacuum ultraviolet absorption spectroscopy detection (GC-VUV).1.1.1 This test method is applicable for plastic recycling and circular schemes including wide range density material from polyethylene and polypropylene.1.1.2 The test method is applicable to waste plastic process oil having a final boiling point of 545 °C or lower at atmospheric pressure as measured by this test or Test Method D2887. This test method is limited to samples having a boiling range greater than 36 °C, and having a vapor pressure sufficiently low to permit sampling at ambient temperature.1.1.3 WPPOs with initial boiling points less than nC5 (36 °C) and final boiling point less than nC15 (271 °C) may be analyzed by Test Method D8369.1.1.4 Appendix X3 is applicable to waste plastic process oils that are predominantly hydrocarbons in the boiling range of pentane, nC5 (36 °C) to tetrahexacontane, nC64 (629 °C).1.2 Concentrations of group type totals are determined by percent mass or percent volume. The applicable working ranges are as follows:Total Aromatics %Mass 1 to 50Monoaromatics %Mass 1 to 50Diaromatics %Mass 1 to 15Tri-plus aromatics %Mass 0.5 to 5PAH %Mass 0.5 to 15Saturates %Mass 5 to 99Olefins %Mass 1 to 80Conjugated diolefins %Mass 0.2 to 5Styrenes %Mass 0.2 to 5The final precision concentration ranges will be defined by a future ILS.1.2.1 Saturates totals are the result of the summation of normal paraffins, isoparaffins, and naphthenes.1.2.2 Aromatics are the summation of monoaromatic and polyaromatic group types. Polyaromatic totals are the result of the summation of diaromatic and tri-plus aromatic group types.1.2.3 Olefin totals are the result of the sum of mono-olefins, conjugated diolefins, non-conjugated diolefins, and cyclic olefins.1.2.4 Styrenes totals are the sum of styrene and alkylated styrenes. Styrenes are classified separately, neither as aromatic nor olefin.1.3 Waste plastic process oil containing mixed plastic types such as polyethylene terephthalate PET and polyvinyl chloride or other material may yield compounds including hetero-compounds that are not speciated by this test method.1.4 Individual components are typically not baseline separated by the procedure described in this test method. The coelutions are resolved at the detector using VUV absorbance spectra and deconvolution algorithms.1.5 This test method may apply to other process oils from sources such as tires and bio-mass boiling between pentane (36 °C) and tetratetracontane (545 °C), but has not been extensively tested for such applications.1.6 Units—The values stated in SI units are to be regarded as standard. No other units of measurement, other than the boiling point of normal paraffins (°F) in Table 2 and Table X.3.1, are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

4.1 A program based on this guide will provide assurance to all concerned that the appropriate elements of radiation safety have been included to protect workers, the general public, and the environment in proximity to the decommissioning activities.4.2 Implementation of such a program will provide assurance to those agencies responsible for review or audit of the decommissioning project that the requirements for radiation protection have been addressed.1.1 This guide provides instruction to the individual charged with the responsibility for developing and implementing the radiation protection program for decommissioning operations.1.2 This guide provides a basis for the user to develop radiation protection program documentation that will support both the radiological engineering and radiation safety aspects of the decommissioning project.1.3 This guide presents a description of those elements that should be addressed in a specific radiation protection plan for each decommissioning project. The plan would, in turn, form the basis for development of the implementation procedures that execute the intent of the plan.1.4 This guide applies to the development of radiation protection programs established to control exposures to radiation and radioactive materials associated with the decommissioning of nuclear facilities. The intent of this guide is to supplement existing radiation protection programs as they may pertain to decommissioning workers, members of the general public and the environment by describing the basic elements of a radiation protection program for decommissioning operations.1.5 This guide defines the elements of a radiation protection program that will ensure that the goals and objectives of a decommissioning activity are attained within the radiological limits and restrictions imposed by applicable governing and regulating agencies. The implementation of such a program will provide radiological protection to personnel and the environment. This guide should be used for developing the documentation that defines the intent and implementation of the radiation protection program for a specific decommissioning project.1.6 The Radiation Protection Program should address the following elements (see Note 1). This program shall be developed and maintained such that it satisfies all applicable Quality Assurance requirements developed for the decommissioning project.NOTE 1: If the site to be decommissioned is adjacent to an operating site, the radiological impact of the operating site must be considered in the development of the Radiation Protection Program for the decommissioning site.1.7 This guide does not address the subjects of emergency preparedness, safeguards, accountability, waste handling, storage, and transportation. Each of these issues has a direct interface with the radiation protection program. However, each constitutes a program in and of itself from program definition through implementation.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

Fan-powered radon reduction systems built into new residential buildings according to this practice are likely to reduce elevated indoor radon levels, where soil-gas is the source of radon, to below 2.0 picocuries per litre (pCi/L) (75 becquerels of radon per cubic metre (Bq/m3)) in occupiable spaces. Passive radon reduction systems do not always reduce such indoor radon concentrations to below 2.0 picocuries per litre (pCi/L) (75 becquerels of radon per cubic metre (Bq/m3)) in occupiable spaces. When a passive system, built according to this practice, does not achieve acceptable radon concentrations, that system should be converted to fan-powered operation to significantly improve its performance. Exceptions—New residential buildings built on expansive soil and karst may require additional measures, not included in this practice, to achieve acceptable radon reduction. Consider consulting with a soil/geotechnical specialist, a qualified foundation structural engineer and contacting the state’s radon in air specialist for up-to-date information about construction methods. Names of your state radon specialist are available from the U.S. EPA website (http://www.epa.gov/radon).Note 1—Residences using private wells can have elevated indoor radon concentrations due to radon that out-gasses from the water used indoors, like water used to shower (7). Consider contacting your state’s radon specialist for up-to-date information on available methods for removing radon from private well water.All soil depressurization radon reduction methods require a gas-permeable layer which can be depressurized. The gas-permeable layer is positioned under the building’s sealed ground cover. In the case of the active soil depressurization system, a radon fan pulls air up the vent stack to depressurize the gas-permeable layer. In the case of a passive soil depressurization system, when air in the vent stack is warmer than that outdoors, the warmer air rises in the stack causing the gas-permeable layer to be depressurized. The passive system depressurizes the gas-permeable layer intermittently; the fan-powered system depressurizes the gas-permeable layer continuously. The performance of gas-permeable layers depends on their design; see 6.4.1.3. A radon reduction system that operates passively requires the most efficient gas-permeable layer.U.S. EPA recommended action level concerning indoor radon states that the radon concentration should always be reduced if it is 4 picocuries per litre (pCi/L) (150 becquerels of radon per cubic metre (Bq/m3)) or above in occupiable spaces. According to U.S. EPA there is also reduced risk when radon concentrations in indoor air are lowered to below 2.0 picocuries per litre (pCi/L) (75 becquerels of radon per cubic metre (Bq/m3)) in occupiable spaces (4).Significant benefit is obtained from reducing indoor radon concentrations to below 4 pCi/L (150 Bq/m3). According to the U.S. EPA’s risk assessment (8), about 62 out of 1000 people who smoke will die from a lifetime’s average radon exposure of 4 pCi/L (150 Bq/m3); for people who never smoked about 7 out of 1000 will people die from the same lifetime exposure. Smokers’ lifetime risk of death from lung cancer is reduced by about half (50 %) when their average radon exposure is reduced from 4 to 2 pCi/L (150 to 75 Bq/m3); their risk is reduced by about two-thirds (67 %) when their exposure is reduced from 4 to 1.3 pCi/L (150 to 75 Bq/m3). Never-smokers’ lifetime risk of death from lung cancer is reduced by about 40 % when their average radon exposure is reduced from 4 to 2 pCi/L (150 to 75 Bq/m3); the risk is reduced by 70 % when their exposure is reduced from 4 to 1.3 pCi/L (150 to 50 Bq/m3). U.S. EPA recommended action level about reducing radon to less that 4 pCi/L (150 Bq/m3) is “Radon levels less than 4 pCi/L (150 Bq/m3) still pose a risk, and in many cases may be reduced” (4). U.S. EPA recommendation is to “Consider fixing between 2 and 4 pCi/L (75 and 150 Bq/m3).” (See radon reduction goals in 1.4 and 6.11.4.)This practice assumes that the customer is informed about the risks of lung cancer from exposure to radon and able to establish by contract the maximum acceptable indoor radon concentration allowed in the new residential building. Because there are goals and recommended action level but no government mandated maximum indoor radon concentration for new residential construction in the United States customers and their agents should negotiate to establish by contract the maximum acceptable indoor radon concentration. The customer should keep in mind that the building’s indoor radon concentration can never be less than the radon concentration in the outdoor air in the vicinity of the building; that establishing target radon levels below 2 pCi/L (75 Bq/m3) could be more expensive; and that radon concentrations below 2 pCi/L (75 Bq/m3) are difficult to measure using current commercially available technology. (See (4, 7), 1.4, and 6.11.4.)The negotiated acceptable radon concentration defined by this standard can vary from customer to customer and contract to contract. The owner’s goal for radon reduction should be known and considered before the radon system design is specified. The construction choices for void space in the gas-permeable layer; vent stack pipe diameter and route; radon fan capacity; and building features influence the radon reduction system’s performance. (See 1.4, 3.2.1, 5.3, 5.4, 5.5, and 6.4.1.3.)This practice offers organized information about radon reduction methods. This practice cannot replace education and experience and should be used in conjunction with trained and certified radon practitioner's judgment. Not all aspects of this practice may be applicable in all circumstances.This practice is not intended, by itself, to replace the standard of care by which adequacy of a professional service may be judged, nor should this practice alone be applied without consideration of a project's unique aspects.The word “Standard” in the title of this practice means that the document has been approved through the ASTM consensus process.Reliable methods for predicting indoor radon concentrations for a particular residential building prior to its construction are not available at this time. If the house is in contact with the ground, it is possible for radon gas to be present. Not all houses will need a radon system; nationally, 1 out of 15, or 7 % of the houses have indoor radon concentrations greater than 4 pCi/L (150 Bq/m3). In the highest state 71 % of the houses have indoor radon greater than 4 pCi/L (150 Bq/m3). In fifteen states less than 10 % of the houses are over 4 pCi/L (150 Bq/m3). In six states 40 % or more of the houses have indoor radon over 4 pCi/L (150 Bq/m3). State and local jurisdictions and individual owners are in the best position to decide where houses with radon reduction features should be built.AbstractThis practice provides the design details and construction methods for two built-in soil depressurization radon control and reduction systems appropriate for use in new low-rise residential buildings. Depending on the configuration of the radon vent stack installed, the radon system's operation may have a pipe route appropriate for a fan-powered radon reduction system, or have a more efficient pipe route appropriate for passively operated radon reduction systems. This practice covers special features for soil depressurization radon reduction systems including (1) slab-on-grade, basement and crawlspace foundation types with cast concrete slab and membrane ground covers, (2) sub-slab and submembrane gas-permeable layers and their drainage, (3) radon system piping, (4) radon discharge separation from openings into occupiable space, (5) radon fan installation, (6) electrical requirements, (7) radon system monitor installation, (8) labeling, (9) radon testing, and (10) system documentation.1.1 This practice covers the design and construction of two radon control options for use in new low-rise residential buildings. These unobtrusive (built-in) soil depressurization options are installed with a pipe route appropriate for their intended initial mode of operation, that is, fan-powered or passive. One of these pipe routes should be installed during a residential building’s initial construction. Specifications for the critical gas-permeable layer, the radon system’s piping, and radon entry pathway reduction are comprehensive and common to both pipe routes.1.1.1 The first option has a pipe route appropriate for a fan-powered radon reduction system. The radon fan should be installed after (1) an initial radon test result reveals unacceptable radon concentrations and therefore a need for an operating radon fan, or (2) the owner has specified an operating radon fan, as well as acceptable radon test results before occupancy. Fan operated soil depressurization radon systems reduce indoor radon concentrations up to 99 %.1.1.2 The second option has a more efficient pipe route appropriate for passively operated radon reduction systems. Passively operated radon reduction systems provide radon reductions of up to 50 %. When the radon test results for a building with an operating passive system are not acceptable, that system should be converted to fan-powered operation. Radon systems with pipe routes installed for passive operation can be converted easily to fan-powered operation; such fan operated systems reduce indoor radon concentrations up to 99 %.1.2 The options provide different benefits:1.2.1 The option using the pipe route for fan-powered operation is intended for builders with customers who want maximum unobtrusive built-in radon reduction and documented evidence of an effective radon reduction system before a residential building is occupied. Radon systems with fan-powered type pipe routes allow the greatest architectural freedom for vent stack routing and fan location.1.2.2 The option using the pipe route for passive operation is intended for builders and their customers who want unobtrusive built-in radon reduction with the lowest possible operating cost, and documented evidence of acceptable radon system performance before occupancy. If a passive system’s radon reduction is unacceptable, its performance can be significantly increased by converting it to fan-powered operation.1.3 Fan-powered, soil depressurization, radon-reduction techniques, such as those specified in this practice, have been used successfully for slab-on-grade, basement, and crawlspace foundations throughout the world.1.4 Radon in air testing is used to assure the effectiveness of these soil depressurization radon systems. The U.S. national goal for indoor radon concentration, established by the U.S. Congress in the 1988 Indoor Radon Abatement Act, is to reduce indoor radon as close to the levels of outside air as is practicable. The radon concentration in outside air is assumed to be 0.4 picocuries per litre (pCi/l) (15 Becquerels per cubic metre (Bq/m3)); the U.S.’s average radon concentration in indoor air is 1.3 pCi/L (50 Bq/m3). The goal of this practice is to make available new residential buildings with indoor radon concentrations below 2.0 pCi/L (75 Bq/m3) in occupiable spaces.1.5 This practice is intended to assist owners, designers, builders, building officials and others who design, manage, and inspect radon systems and their construction for new low-rise residential buildings.1.6 This practice can be used as a model set of practices, which can be adopted or modified by state and local jurisdictions, to fulfill objectives of their residential building codes and regulations. This practice also can be used as a reference for the federal, state, and local health officials and radiation protection agencies.1.7 The new dwelling units covered by this practice have never been occupied. Radon reduction for existing low rise residential buildings is covered by Practice E 2121, or by state and local building codes and radiation protection regulations.1.8 Fan-powered soil depressurization, the principal strategy described in this practice, offers the most effective and most reliable radon reduction of all currently available strategies. Historically, far more fan-powered soil depressurization radon reduction systems have been successfully installed and operated than all other radon reduction methods combined. These methods are not the only methods for reducing indoor radon concentrations (1-3).1.9 Section 7 is Occupational Radon Exposure and Worker Safety.1.10 Appendix X1 is Principles of Operation for Fan-Powered Soil Depressurization Radon Reduction.1.11 Appendix X2 is a Summary of Practice E 1465 Requirements for Installation of Radon Reduction Systems in New Low Rise Residential Building.1.12 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.13 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
15120 条记录,每页 15 条,当前第 1 / 1008 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页