微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

定价: 819元 / 折扣价: 697 加购物车

在线阅读 收 藏

定价: 975元 / 折扣价: 829 加购物车

在线阅读 收 藏

定价: 975元 / 折扣价: 829 加购物车

在线阅读 收 藏
AS 1265-1990/Amdt 1-1992 Bushings for alternating voltages above 1000 V 现行 发布日期 :  1992-07-13 实施日期 : 

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

定价: 1060元 / 折扣价: 901 加购物车

在线阅读 收 藏

定价: 689元 / 折扣价: 586 加购物车

在线阅读 收 藏

定价: 819元 / 折扣价: 697 加购物车

在线阅读 收 藏

定价: 689元 / 折扣价: 586

在线阅读 收 藏

1 Scope and object This part of IEC 60871 is applicable to both capacitor units and capacitor banks intended to be used, particularly, for power-factor correction of a.c. power systems having a rated voltage above 1 000 V and frequencies of 15 Hz to 60

定价: 1274元 / 折扣价: 1083

在线阅读 收 藏

5.1 Turbidity is monitored to help control processes, monitor the health and biology of aquatic environments and to determine the impact of environmental events such as storms, floods, runoff, etc. Turbidity is undesirable in drinking water, plant-effluent waters, water for food and beverage production, and for a large number of other water-dependent manufacturing processes. Turbidity is often reduced by coagulation, sedimentation and water filtration. The measurement of turbidity may indicate the presence of particle-bound contaminants and is vital for monitoring the completion of a particle-waste settling process. Significant uses of turbidity measurements include:5.1.1 Compliance with permits, water-quality guidelines, and regulations;5.1.2 Determination of transport and fate of particles and associated contaminants in aquatic systems;5.1.3 Conservation, protection and restoration of surface waters;5.1.4 Measure performance of water and land-use management;5.1.5 Monitor waterside construction, mining, and dredging operations;5.1.6 Characterization of wastewater and energy-production effluents;5.1.7 Tracking water-well completion including development and use; and5.1.8 As a surrogate for other constituents in water including sediment and sediment-associated constituents.5.2 The calibration range of a turbidimeter shall exceed the expected range of TU values for an application but shall not exceed the measurement range specified by the manufacturer.5.3 Designs described in this standard detect and respond to a combination of relative absorption, intensity of light scattering, and transmittance. However, they do not measure these absolute physical units as defined in 3.2.15 and 3.2.19.5.4 Several different turbidimeter designs may be used for this test method and one design may be better suited for a specific type of sample or monitoring application than another. The selection flowchart in Annex A1 provides guidance for the selection of an appropriate turbidimeter design for a specific application.5.5 Report turbidity in units that reflect the design of the turbidimeter used as recommended in 4.3. See Table 1 and Section 7 for a discussion of the design criteria and derivation of reporting units.5.6 Table 1 and Section 7 lists the turbidimeter designs currently used for in-situ measurements. Future revisions of the method may include additional designs.1.1 This test method covers the in-situ field measurements of turbidity in surface water. The measurement range is greater than 1 TU and the lesser of 10 000 TU or the maximum measurable TU value specified by the turbidimeter manufacturer.1.1.1 Precision data was conducted on both real world and surrogate turbidity samples up to about 1000 TU. Many of the technologies listed in this test method are capable of measuring above that provided in the precision section (see Section 16).1.2 “In-situ measurement” refers in this test method to applications where the turbidimeter sensor is placed directly in the surface water in the field and does not require transport of a sample to or from the sensor. Surface water refers to springs, lakes, reservoirs, settling ponds, streams and rivers, estuaries, and the ocean.1.3 Many of the turbidity units and instrument designs covered in this test method are numerically equivalent in calibration when a common calibration standard is applied across those designs listed in Table 1. Measurement of a common calibration standard of a defined value will also produce equivalent results across these technologies. This test method prescribes the assignment of a determined turbidity values to the technology used to determine those values. Numerical equivalence to turbidity standards is observed between different technologies but is not expected across a common sample. Improved traceability beyond the scope of this test method may be practiced and would include the listing of the make and model number of the instrument used to determine the turbidity values.1.4 In this test method, calibration standards are often defined in NTU values, but the other assigned turbidity units, such as those in Table 1 are equivalent. For example, a 1 NTU formazin standard is also a 1 FNU, a 1 FAU, a 1 BU, and so forth.1.5 This test method was tested on different natural waters and with standards that served as surrogates for samples. It is recommended to validate the method response for waters of untested matrices.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 The purpose of this practice is to outline a procedure for using GWT to locate areas in metal pipes in which wall loss has occurred due to corrosion or erosion.5.2 GWT does not provide a direct measurement of wall thickness, but is sensitive to a combination of the CSC (or reflection coefficient) and circumferential extent and axial extent of any metal loss. Based on this information, a classification of the severity can be assigned.5.3 The GWT method provides a screening tool to quickly identify any discontinuity along the pipe. Where a possible defect is found, a follow-up inspection of suspected areas with ultrasonic testing or other NDT methods is normally required to obtain detailed thickness information, nature, and extent of damage.5.4 GWT also provides some information on the axial length of a discontinuity, provided that the axial length is longer than roughly a quarter of the wavelength.5.5 The identification and severity assessment of any possible defects is qualitative only. An interpretation process to differentiate between relevant and non-relevant signals is necessary.5.6 This practice only covers the application specified in the scope. The GWT method has the capability and can be used for applications where the pipe is insulated, buried, in road crossings, and where access is limited.5.7 GWT shall be performed by qualified and certified personnel, as specified in the contract or purchase order. Qualifications shall include training specific to the use of the equipment employed, interpretation of the test results, and guided wave technology.5.8 A documented program which includes training, examination, and experience for the GWT personnel certification shall be maintained by the supplying party.1.1 This practice provides a guide for the use of waves generated using magnetostrictive transduction for guided wave testing (GWT) welded tubulars. Magnetostrictive materials transduce or convert time varying magnetic fields into mechanical energy. As a magnetostrictive material is magnetized, it strains. Conversely, if an external force produces a strain in a magnetostrictive material, the material’s magnetic state will change. This bi-directional coupling between the magnetic and mechanical states of a magnetostrictive material provides a transduction capability that can be used for both actuation and sensing devices.1.2 GWT utilizes ultrasonic guided waves in the 10 to approximately 250 kHz range, sent in the axial direction of the pipe, to non-destructively test pipes for discontinuities or other features by detecting changes in the cross-section or stiffness of the pipe, or both.1.3 GWT is a screening tool. The method does not provide a direct measurement of wall thickness or the exact dimensions of discontinuities. However, an estimate of the severity of the discontinuity can be obtained.1.4 This practice is intended for use with tubular carbon steel products having nominal pipe size (NPS) 2 to 48 corresponding to 60.3 to 1219.2 mm (2.375 to 48 in.) outer diameter, and wall thickness between 3.81 and 25.4 mm (0.15 and 1 in.).1.5 This practice only applies to GWT of basic pipe configuration. This includes pipes that are straight, constructed of a single pipe size and schedules, fully accessible at the test location, jointed by girth welds, supported by simple contact supports and free of internal, or external coatings, or both; the pipe may be insulated or painted.1.6 This practice provides a general practice for performing the examination. The interpretation of the guided wave data obtained is complex and training is required to properly perform data interpretation.1.7 This practice does not establish an acceptance criterion. Specific acceptance criteria shall be specified in the contractual agreement by the cognizant engineer.1.8 Units—The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
40 条记录,每页 15 条,当前第 1 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页