微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

This specification covers standard requirements for seamless, black, plain-end steel pipes for use in the conveyance of fluids under pressure. A quantity of pipe of the same ordered diameter, heat, wall thickness, and grade shall be given. Heat and product analyses shall be performed wherein steel pipes shall conform to the required chemical composition for carbon, sulfur, and phosphorus. Steel samples shall undergo tension test and shall conform to tensile properties such as yield strength and tensile strength. Hydrostatic pressure test shall be performed for steel samples with specified wall thickness and test pressure. The entire outer surface of the steel pipe shall undergo nondestructive electric test and shall be inspected for longitudinal defects by either magnetic particle inspection, ultrasonic inspection, and electromagnetic inspection.1.1 This specification covers seamless, black, plain-end steel pipe for use in the conveyance of fluids under pressure. Pipe in sizes NPS 1 to 26, inclusive, as given in ASME B36.10M is included. Pipe having other dimensions, in this size range, may be furnished provided such pipe complies with all other requirements of this specification.1.2 It is intended that the pipe be capable of being circumferentially welded in the field when welding procedures in accordance with the requirements of the applicable pipeline construction code are used.1.3 The values stated in either inch-pound units or in SI units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values in each system are not exact equivalents; therefore, each system is to be used independently of the other.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Implantable medical device labeling often results in a variety of label formats and information prioritization. This variability can be seen not only across different manufacturers but also across different implant types.3 At present label design and layout is developed by a given manufacturer and represents balancing internal needs (such as manufacturing, distribution, and marketing), regulatory requirements within various markets, and end user needs (as identified by individual manufacturers performing “voice of the consumer” feedback on their label designs).4.2 At no fault to any given manufacturer, this process, along with the manner in which label information competes for available “real estate” on a package, often leads to variable prioritization of label information and highly variable label designs. The impact of this variability on patient care is not well documented within the published literature. An article from AAOS Now in 2009 described potential issues around label variability and gave anecdotal evidence of its impact.34.3 No published literature demonstrating a clear and conclusive impact on patient safety resulting from implant label variability was identified. Despite this lack of evidence, anecdotal observations and input from various involved individuals and organizations (surgeons, operating room nurses, hospital administrators, product representatives, and manufacturers) suggests a potential, although unproven, benefit for an increased standardization of implant labeling.4.4 The authors of this guide believe it is important to highlight that no universally accepted method for validation of a label’s effectiveness exists. Current validation methods consist of varying methods of customer feedback on an existing label design using formal customer questionnaires, informal customer feedback through individual polling, and internal manufacturer-driven studies. The label recommendations presented within this guide have not been validated as more or less effective than other existing implant labels currently in use.4.5 These recommendations have been developed through the collaboration of an ASTM-sponsored task group with representation from large and small orthopedic implant manufacturers, orthopedic surgeons (specifically the Biomedical Engineering Committee from the American Academy of Orthopedic Surgeons), healthcare facility administrators, operating room nurses, the U.S. Food and Drug Administration (FDA), and the Canadian Healthcare System. The task group utilized “voice of consumer” feedback from previous manufacturer label initiatives combined with input from various end users on the task group. This process did not identify any given implant label format as being more or less effective but only attempts to prioritize information and recommend a universal format for this information. A manufacturer may determine that an alternative format may be more effective for its internal processes and elect not to follow these recommendations.1.1 The goal of this guide is to recommend a universal label format (across manufacturers and various implants) of content and relative location of information necessary for final implant selection within an implant’s overall package labeling.1.2 This guide recommends package labeling for musculoskeletal based implants individually processed and packaged with the intent of being opened at the point of use, typically in the operating room.1.3 This guide identifies the necessary, “high priority” label content and recommendations for the layout and location of information for accurate implant identification by the end users in the operating room environment.1.4 This goal is achieved by creating a partitioned, secondary area of an implant’s package label or a separate label to present this information uniformly.1.5 The authors of this guide identified the competing needs of regulatory requirements, manufacturing/distribution, and implant identification. It is recognized through our task group’s efforts that, if a manufacturer elects to implement these recommendations, balancing these competing needs may necessitate changing a manufacturer’s internal processes, relabeling their entire inventory (either at a single point in time or over a defined time period), or accepting duplicate information on an implant’s package label. No additional compromises that would allow the primary goal of uniform implant label design across manufacturers were identified.1.6 It is not the intent of this guide to limit or dictate overall package labeling content.1.7 It is not the intent of this guide to supplant existing regulatory requirements (only to augment or complement existing regulatory label requirements).1.8 The use or application of multiple languages is not prevented by this guide; however, use of more than one language is discouraged on the implant selection sublabel (ISSL) defined in this guide. The language of choice is left to the manufacturer and should be dictated by the end user and regulatory requirements in the jurisdictions where the device is marketed. International symbols should also be considered to avoid the need for multiple ISSLs where possible.1.9 Use and implementation of this guide is optional and at the sole discretion of the implant’s manufacturer. It shall be implemented with the following considerations:1.9.1 The content and layout of any orthopedic implant label should be influenced by risk management activities and all label formats should be validated.1.9.2 If internal risk management activities recommend deviation from this guide, the manufacturer is discouraged from implementing a hybrid label that partially applies the principles and recommendations in this guide.1.10 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.11 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.12 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
CAN/CSA-M682-04 Agricultural Front-End Loaders - Safety Requirements 现行 发布日期 :  1970-01-01 实施日期 : 

Update No. 1 was published as notification that this is now a National Standard of Canada This PDF includes Update No. 1 1 Scope 1.1 This Standard specifies safety requirements for the design and construction of agricultural front-end loaders (f

定价: 455元 / 折扣价: 387

在线阅读 收 藏

Addenda 2 to ANSI Z21.15-1997/CGA 9.1-M97, Manually Operated Gas Valves for Appliances, Appliance Connector Valves and Hose End Valves

定价: 683元 / 折扣价: 581

在线阅读 收 藏

This specification establishes the requirements for labelling of materials and products (including packaging), wherein a biodegradable plastic film or coating is attached (either through lamination or extrusion directly onto the paper) to compostable substrates and the entire product or package is designed to be composted in municipal and industrial aerobic composting facilities. This specification, however, does not describe the contents of the product or their performance with regards to compostability or biodegradability. In order to compost satisfactorily, the product must demonstrate each of the three characteristics as follows: (1) proper disintegration during composting; (2) adequate level of inherent biodegradation; and (3) no adverse impacts on the ability of composts to support plant growth.1.1 This specification covers end items that include plastics or polymers where plastic film/ sheet or polymers are incorporated (either through lamination, extrusion or mixing) to substrates and the entire end item is designed to be composted under aerobic conditions in municipal and industrial composting facilities, where thermophilic temperatures are achieved.1.2 This specification is intended to establish the requirements for labeling of end items which use plastics or polymers as coatings or binders, as “compostable in aerobic municipal and industrial composting facilities.”1.3 The properties in this specification are those required to determine if end items (including packaging) which use plastics and polymers as coatings or binders will compost satisfactorily, in large scale aerobic municipal or industrial composting where maximum throughput is a high priority and where intermediate stages of plastic biodegradation must not be visible to the end user for aesthetic reasons.1.4 The following safety hazards caveat pertains to the test methods portion of this standard: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: There is no known ISO equivalent for this standard.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method can be used for manufacturing quality control or manufacturing quality assurance purposes to determine the CEG concentration of PET yarns used in either geogrids or geotextiles.5.2 The CEG content of the PET yarns may have an influence on the properties of the geosynthetic, such as its hydrolysis resistance. The lower the value, the higher the hydrolysis resistance of the yarns.5.3 This test does not set the limiting (maximum) value for various engineering applications. Such a specification is a decision of the design engineer, owner, and/or regulator.1.1 This test procedure is based significantly on the GRI GG7 test procedure, Carboxyl End Group Content of Polyethylene Terephthalate (PET) Yarns.1.2  This test method is used to determine the concentration, in mmol/kg, of carboxyl end groups (CEG) found in poly(ethylene terephthalate) (PET) yarns by titration.1.3 This test is applicable to geogrid yarns that are made from PET resin.NOTE 1: This test is also applicable to high-strength geotextile yarns that are made from PET and are used in reinforcement applications.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 Scope 1.1.1 This standard applies to manually-operated gas valves (see Part IV, Definitions), hereinafter referred to as valves, not exceeding 4 inches (102 mm) pipe size, and pilot shut-off devices (see Part IV, Definitions), hereinafter referred

定价: 3959元 / 折扣价: 3366

在线阅读 收 藏

Scope Details test and examination criteria for manually operated gas valves which are substantially of the plug and body, or rotating disc type, and to valves of other types which will provide equivalent performance. The standard presents minimum lev

定价: 774元 / 折扣价: 658

在线阅读 收 藏

4.1 These test methods are applicable to specimens with or without specific conditioning regimens. Tests are permitted to be performed on specimens that are not at moisture equilibrium, such as under production conditions in a plant, or on specimens that have been conditioned to specified moisture content or durability conditioning prior to testing.4.2 These test methods can be used as follows:4.2.1 To standardize the determination of strength properties for the material and joint being tested.4.2.2 To investigate the effect of parameters that may influence the structural capacity of the joint, such as joint profile, adhesive type, moisture content, temperature, and strength-reducing characteristics in the assembly.4.3 These test methods do not intend to address all possible exposure or performance expectations of end joints. The following are some performance characteristics not considered:4.3.1 Long-term strength and permanence of the wood adhesive.4.3.2 Time dependent mechanical properties of the joint.4.3.3 Elevated temperature performance of the joint.1.1 This standard provides test methods for evaluating the structural capacity and integrity of end joints in structural wood products.1.2 Off-line test methods include: (1) Axial Tension, (2) Bending, and (3) Cyclic Delamination.1.3 In-line test methods include: (1) Tension Proofload and (2) Bending Proofload.1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 End-jointed lumber studs used in fire resistance-rated assemblies shall be able to support the superimposed design load for the specified time under an elevated temperature exposure, when a wall assembly is exposed to a standard fire specified in Test Methods E119. Light-weight wood assemblies utilize gypsum wallboard or other types of membrane protection to accomplish a requisite fire resistance rating for the assembly. However, wood studs and the end joints in the studs shall resist the developed elevated temperature environment for the duration of the rating. This practice provides a method for evaluating the elevated temperature performance of an assembly constructed with end-jointed studs having fire performance comparable to an assembly constructed with solid-sawn studs.1.1 This practice is to be used to evaluate the elevated temperature performance of end-jointed lumber studs.1.2 A symmetric wall assembly containing end-jointed lumber studs is exposed to a standard fire exposure specified in Test Methods E119.1.3 End-jointed lumber studs are deemed qualified if the wall assembly resists a standard fire exposure specified in Test Methods E119 for a period of 60 min or more. Qualification of end-jointed lumber studs are restricted to the joint configuration and adhesive tested.1.4 This practice is used to evaluate the performance of end-jointed lumber studs to heat and flame under controlled conditions, but does not by itself incorporate all factors required for fire hazard or fire risk assessment under actual fire conditions.1.5 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 If not properly qualified, chemicals and chemical processes can attack metals used during aircraft maintenance and production. It is important to qualify only processes and chemical formulas that do not have any deleterious effects on aircraft metallic skins, fittings, components, and structures. This test procedure is used to detect and measure intergranular attack or pitting depth caused by aircraft maintenance chemical processes, hence, this test procedure is useful in selecting a process that will not cause intergranular attack or end grain pitting on aircraft alloys.4.2 The purpose of this practice is to aid in the qualification or process conformance testing or production of maintenance chemicals for use on aircraft.4.2.1 Actual aircraft processes in the production environment shall give the most representative results; however, the test results cannot be completely evaluated with respect to ambient conditions which normally vary from day to day. Additionally, when testing chemicals requiring dilutions, water quality and composition can play a role in the corrosion rates and mechanism affecting the results.4.2.2 Some examples of maintenance and production chemicals include: organic solvents, paint strippers, cleaners, deoxidizers, water-based or semi-aqueous cleaners, or etching solutions and chemical milling solutions.1.1 This practice covers the procedures for testing and measuring intergranular attack (IGA) and end grain pitting on aircraft metals and alloys caused by maintenance or production chemicals.1.2 The standard does not purport to address all qualification testing parameters, methods, critical testing, or criteria for aircraft production or maintenance chemical qualifications. Specific requirements and acceptance testing along with associated acceptance criteria shall be found where applicable in procurement specifications, materials specifications, appropriate process specifications, or previously agreed upon specifications.1.3 Units—The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers seamless and electric-resistance-welded steel pipe used as conduit for the installation of high-pressure pipe-type electrical cables in NPS 4 to NPS 12, inclusive, with nominal (average) wall thicknesses 0.219 to 0.562 in., depending on size. The steel shall be made by one or more of the following processes: open-hearth, basic-oxygen, or electric-furnace. Tensile strength tests, flattening test, hydrostatic tests shall be made for the materials to conform the requirements as specified. If the results of the mechanical tests do not conform to requirements specified, retests shall be made.1.1 This specification covers two types, seamless (S) and electric-resistance-welded (E), of steel pipe used as conduit for the installation of high-pressure pipe-type electrical cables in NPS 4 to NPS 12 [DN 100 to DN 300], inclusive, with nominal (average) wall thicknesses 0.219 to 0.562 in. [5.56 to 14.27 mm], depending on size. Pipe having other dimensions (Note 2) may be furnished, provided such pipe complies with all other requirements of this specification.NOTE 1: The dimensionless designator NPS (nominal pipe size) has been substituted in this standard for such traditional terms as “nominal diameter,” “size,” and “nominal size.”NOTE 2: A comprehensive listing of standardized pipe dimensions is contained in ASME B36.10.1.2 Pipe ordered under this specification is suitable for welding and for forming operations involving flaring, belling, and bending.1.3 Pipe for this purpose shall be furnished in Grade A or Grade B as specified in the purchase order. Grade A is more suitable for forming operations involving bending, flaring, or belling and this grade is normally preferred. This provision is not intended to prohibit the cold bending, flaring, or belling of Grade B pipe.1.4 This specification is expressed in both inch-pound units and in SI units; however, unless the purchase order or contract specifies the applicable M specification designation (SI units), the inch-pound units shall apply. The values stated in either inch-pound or SI units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system may not be exact equivalents; therefore each system shall be used independently of the other. Combining values from the two systems may results in nonconformance with the standard.1.5 The following hazard caveat applies to the test method portion, Section 20, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This classification system covers thermoplastic materials, used as joining materials, for the creation of joints between similar or dissimilar materials, to produce finished products or parts that are intended to be disassembled and/or reassembled.1.2 This class of materials enables disconnection of the different parts or layers of a products for refurbishing, repair and full recovery and recycling of the joined materials, for instance at the end of life of the product(s), enabling the reuse of valuable resources, and hence reducing adverse impact on the environment.1.3 The properties included in this classification system are those required to identify the materials covered. It is possible that there are other requirements necessary to identify particular characteristics important to specialized applications. One way of specifying them is by using the suffixes as given in Section 5.1.4 This classification system and subsequent line callout (specification) are intended to provide a means of calling out plastic materials used in the fabrication of end items or parts. It is not intended for the selection of materials. Material selection is best made by those having expertise in the plastic field after careful consideration of the design and the performance required of the part, the environment to which it will be exposed, the fabrication process to be employed, the costs involved, and the inherent properties of the material other than those covered by this classification system.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 The following precautionary caveat pertains only to the test methods portion, Section 11, of this classification system. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: Application examples are fully recyclable mattresses and floor coverings. These products can be disassembled into its different parts, by using heat, for refurbishing, repair and full recovery and recycling of the joined materials at the end of the product’s life.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers spherical-ended ferrous needle rollers intended for use as bearing components. Rollers shall be made of chrome alloy steel E50100, E51100, E52100, and shall conform to specified requirements for heat treatment and protective coatings. Rollers shall also meet specified values for diameter, length, and effective length in accordance with MS Part No.1.1 This specification covers ferrous needle rollers having spherical ends.1.2 Spherical-ended needle rollers designed to this specification are intended for use as bearing components. A complement of rollers is run on a hardened (HRC 58-65, see Test Methods E18) shaft and in a hardened (HRC 58-65) housing bore to form the bearing.1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This specification contains many of the requirements of MS19065, which was originally developed by the Department of Defense and maintained by the Defense Supply Center Richmond. The following government activity codes may be found in the Department of Defense, Standardization Directory SD-1.2Preparing activity Custodians Review ActivitiesDLA–GS4 Army–AT Navy–MC  Navy–OS Air Force–84  Air Force–99    DLA–GS4  1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Advanced ceramics are candidate materials for high-temperature structural applications requiring high strength along with wear and corrosion resistance. In particular, ceramic tubes are being considered and evaluated as hermetically tight fuel containment tubes for nuclear reactors. These ceramic tubes require end-plugs for containment and structural integrity. The end-plugs are commonly bonded with high-temperature adhesives into the tubes. The strength and durability of the test specimen joint are critical engineering factors, and the joint strength has to be determined across the full range of operating temperatures and conditions. The test method has to determine the breaking force, the nominal joint strength, the nominal burst pressure, and the failure mode for a given tube/plug/adhesive configuration.5.2 The EPPO test provides information on the strength and the deformation of test specimen joints under applied shear, tensile, and mixed-mode stresses (with different plug geometries) at various temperatures and after environmental conditioning.5.3 The end-plug test specimen geometry is a direct analog of the functional plug-tube application and is the most direct way of testing the tubular joint for the purposes of development, evaluation, and comparative studies involving adhesives and bonded products, including manufacturing quality control. This test method is a more realistic test for the intended geometry than the current shear test of ceramic joints (Test Method C1469), which uses an asymmetric four-point shear test on a flat adhesive face joint.5.4 The EPPO test method may be used for joining method development and selection, adhesive comparison and screening, and quality assurance. This test method is not recommended for adhesive property determination, design data generation, material model verification/validation, or combinations thereof.1.1 This test method covers the determination of the push-out force, nominal joint strength, and nominal burst pressure of bonded ceramic end-plugs in advanced ceramic cylindrical tubes (monolithic and composite) at ambient and elevated temperatures (see 4.2). The test method is broad in scope and end-plugs may have a variety of different configurations, joint types, and geometries. It is expected that the most common type of joints tested are adhesively bonded end-plugs that use organic adhesives, metals, glass sealants, and ceramic adhesives (sintered powders, sol-gel, polymer-derived ceramics) as the bonding material between the end-plug and the tube. This test method describes the test capabilities and limitations, the test apparatus, test specimen geometries and preparation methods, test procedures (modes, rates, mounting, alignment, testing methods, data collection, and fracture analysis), calculation methods, and reporting procedures.1.2 In this end-plug push-out (EPPO) test method, test specimens are prepared by bonding a fitted ceramic plug into one end of a ceramic tube. The test specimen tube is secured into a gripping fixture and test apparatus, and an axial compressive force is applied to the interior face of the plug to push it out of the tube. (See 4.2.) The axial force required to fracture (or permanently deform) the joined test specimen is measured and used to calculate a nominal joint strength and a nominal burst pressure. Tests are performed at ambient or elevated temperatures, or both, based on the temperature capabilities of the test furnace and the test apparatus.1.3 This test method is applicable to end-plug test specimens with a wide range of configurations and sizes. The test method does not define a standardized test specimen geometry, because the purpose of the test is to determine the nominal joint strength and nominal burst pressure of an application-specific plug-tube design. The test specimen should be similar in size and configuration with the intended application and product design.1.4 Calculations in this test method include a nominal joint strength which is specific to the adhesives, adherends, configuration, size, and geometry of the test specimen. The nominal joint strength has value as a comparative test for different adhesives and plug configurations in the intended application geometry. When using nominal joint strength for comparison purposes, only values obtained using identical geometries should be compared due to potential differences in induced stress states (shear versus tensile versus mixed mode). The joint strength calculated in this test may differ widely from the true shear or tensile strength (or both) of the adhesive due to mixed-mode stress states and stress concentration effects. (True adhesive shear and tensile strengths are material properties independent of the joint geometry.)1.5 In this test, a longitudinal failure stress is being calculated and reported. This longitudinal failure stress acts as an engineering corollary to the burst pressure value measured from a hydrostatic pressure test, which is a more difficult and complex test procedure. Thus this longitudinal failure stress is recorded as a nominal burst pressure. As a general rule, the absolute magnitude of the nominal burst pressure measured in this EPPO test is different than the absolute magnitude of a burst pressure from a hydrostatic burst pressure test, because the EPPO test does not induce the hoop stresses commonly observed in a hydrostatic pressure test.1.6 The use of this test method at elevated temperatures is limited by the temperature capabilities of the loading fixtures, the gripping method (adhesive, mechanical clamping, etc.), and the furnace temperature limitations.1.7 Values expressed in this test method are in accordance with the International System of Units (SI) and IEEE/ASTM SI 10.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
32 条记录,每页 15 条,当前第 2 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页