微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

1.1 This practice covers the exposure of plastics to a specific test environment. The test environment is an externally-heated laboratory-scale reactor that simulates a composting system. Plastic exposure occurs in the presence of a media undergoing aerobic composting. The standard media simulates a municipal solid waste from which inert materials have been removed. This practice allows for the use of other media to represent particular waste streams. This practice provides exposed specimens for further testing and for comparison with controls. This test environment does not necessarily reproduce conditions that could occur in a particular full-scale composting process. 1.2 Changes in the material properties of the plastic and controls should be determined using appropriate ASTM test procedures. Changes could encompass physical and chemical changes such as disintegration and degradation. 1.3 This practice may be used for different purposes. Therefore, the interested parties must select: exposure conditions from those allowed by this practice; criteria for a valid exposure, that is, minimum or maximum change requirements for the compost and controls; and the magnitudes of material properties changes required for the plastic specimens. 1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in Section 8. Note 1-There is no similar or equivalent ISO standard.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
CAN/CSA-C22.2 NO. 15-M91 (R2001) Electrically Heated Warming Pads 现行 发布日期 :  1970-01-01 实施日期 : 

1. Scope 1.1 This Standard applies to cord-connected, electrically heated warming pads with associated control units, for household and hospital use, to be used in nonhazardous locations, designed for nominal 120 V ac or dc circuits, in accordance wit

定价: 455元 / 折扣价: 387

在线阅读 收 藏

1. Scope 1.1 This Standard applies to cord-connected and permanently connected electrically heated pottery kilns for use on nominal system voltages of 600 V or less, designed to be used in accordance with the Rules of the Canadian Electrical Code, Par

定价: 455元 / 折扣价: 387

在线阅读 收 藏

5.1 Cast iron Yankee dryers can be up to 6.7 m [22 ft] in diameter, 7.3 m [24 ft] long, and weigh 91 000 Kg [100 tons], or more (refer to Fig. 1). Vessel thickness measurements are available from the paper/tissue machine operator. Cast iron is a brittle metal and has no specific yield point. Yankee dryers must maintain specific dimensional tolerances. When a pressurized Yankee or steam heated paper dryer (SHPD) remains stationary, it fills with condensate at a rapid rate. In an hour, a steam pressurized Yankee or SHPD can fill half way with condensate, doubling the weight on the frame, and the floor. Some Yankee owners have corporate requirements that a cast iron Yankee dryer remain stationary for 1/2 h, then rotation is required. Permission is required, if the Yankee is to remain stationary for more time. This issue should be discussed with the responsible person prior to the examination.FIG. 1 Yankee Dryer Drum5.2 Yankee dryers operate under a heated hood. The hood is in close proximity to the Yankee shell and allows only inches of clearance for the top half of the vessel.5.3 Cast iron steam heated paper machine dryers are 2 m [6 ft] in diameter, or more, and may be 9 m [30 ft] long.5.4 Grey cast iron experiences a continuing reduction in elastic modulus as it is stressed to increasing higher levels. It is prudent not to stress grey cast iron material beyond its operating stress level.5.5 Flaws to be found are the same as those in any cast and machined product. Attempts have been made to characterize strength properties of cast irons in compact tension tests. In a TAPPI sponsored laboratory study, two out of three cast iron compact tension specimens experienced unplanned failures. From that experience it was cautioned that cracks initiated and grew faster than expected resulting in brittle fracture before the process could be halted. The failure of these two coupons demonstrated the rate in which cracks can grow in these materials and the material’s inability to stop a crack once it begins to grow. In each case, crack advance was extremely rapid and without warning. (See Note 1.)NOTE 1: Alleveto, C., and Williams D., Acoustic Emission Evaluation of Yankee Dryer Shell Material, 1991 TAPPI Engineering Conference Proceedings, pages 475-480.5.6 Maximum Examination Pressure—Maximum Allowable Working Pressure for cast iron vessels is set based on ASME (Section VIII) pressure calculations based on thickness, radius, and material strength values, and will not exceed 10 bar [160 psi] and 230 °C [450 °F] (Specification A278/A278M). When vessels are pressurized, anomalies produce emission at pressures less than normal fill pressure. Historically, if there is damage in a cast iron pressure boundary, AE activity will begin at load/stress levels less than 50 % of operating. Defects as small as 3 mm [1/8 in.] have been found using AE, during steam pressurization to operating pressure.5.7 Pressure increments should not exceed 0.35 bar [5 psi] per minute. If pressurization medium is to be steam, the Yankee should have been through the warm-up process.5.8 Yankee dryers may receive a subsequent examination, if necessary, after the Yankee is rotated to remove any condensate present.5.9 Pressurization Schedule—Pressurization should proceed at rates that allow achieving maximum examination pressure within a 30 minute period. During pressurization, pressure holds are not necessary; however, they may be useful for reasons other than measurement of AE. Pressure hold upon achieving maximum examination pressure may be up to 30 min.5.10 Excess background noise may distort AE data or render the AE measurements useless. Users must be aware of the following common sources of background noise: (measurable flow noise); mechanical contact with the vessel by objects; electromagnetic interference (EMI) from cranes, and radio frequency interference (RFI) from nearby broadcasting facilities and from other sources; leaks at pipe or hose connections, or rain drops. This practice should not be used if background noise cannot be eliminated or controlled.5.11 Other Non-destructive test methods may be used to evaluate the significance of AE sources. Magnetic particle, ultrasonic, and radiographic examinations have been used to establish circumferential position, depth, and dimensions of flaws that produce AE. Procedures for using other NDT nethods are beyond the scope of this practice.1.1 This practice is no longer being updated but is being retained for historical value due to the procedures herein that are unique to the AE community.1.2 This practice provides guidelines for carrying out acoustic emission (AE) examinations of Yankee and Steam Heated Paper Dryers (SHPD) of the type to make tissue, paper, and paperboard products.1.3 This practice requires pressurization to levels used during normal operation. The pressurization medium may be high temperature steam, air, or gas. The dryer is also subjected to significant stresses during the heating up and cooling down periods of operation. Acoustic Emission data maybe collected during these time periods but this testing is beyond the scope of this document.1.4 The AE measurements are used to detect, as well as, localize emission sources. Other methods of nondestructive testing (NDT) may be used to further evaluate the significance of acoustic emission sources.1.5 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The heated diode sensor device used in this practice is selective for HVOCs. Other electronegative compounds, such as alcohols, ketones, nitrates, and sulfides, may cause a positive interference with the performance of the heated diode sensor to detect HVOCs, but to do so, they must be present at much higher concentrations than the HVOCs.NOTE 2: For volatile organic compound (VOC) screening purposes, a flame ionization detector (FID) selectively responds to flammable VOCs; a photoionization detector (PID) selectively responds to VOCs having a double bond; and a heated diode sensor selectively responds to halogenated VOCs.5.2 This practice can be used for screening media known to contain TCE to estimate the concentration of TCE in the media. Procedure A is to be used for screening soil known to contain TCE and Procedure B is to be used for screening water known to contain TCE. Both Procedures A and B involve measuring the TCE concentration in the headspace above a sample. From this measurement, an estimated concentration of TCE in the sample can be determined. Any TCE remaining in the sample is not measured by this practice. Any other HVOC present in the sample will be reported as TCE.5.3 This practice can also be used for screening the headspace above a soil or water suspected of containing HVOC contamination to indicate the presence or absence of HVOC contamination in the soil (Procedure A) or water (Procedure B). Any HVOC contamination remaining in the sample is not detected by this practice.5.4 Detection Limit—The detection limit of the heated diode sensor for TCE is 0.1 mg/m3 in air, based on a signal-to-noise ratio of 2. For a 25-g TCE-contaminated soil sample in a 250-mL container, the detection limit of Procedure A for TCE is 0.001 mg/Kg, assuming complete partitioning of TCE into the headspace. For a 25-g TCE-contaminated water sample in a 250-mL container, the detection limit of Procedure B for TCE is 0.001 mg/L, assuming complete partitioning of TCE into the headspace.5.5 This practice can be used to screen moist soil samples and water samples. Water vapor does not interfere with the performance of the heated diode sensor.5.6 Hydrocarbon fuels, including fuels containing aromatic compounds, such as gasoline, are not detected by the practice.1.1 This practice describes procedures for screening media known to contain the halogenated volatile organic compound (HVOC), trichloroethylene (TCE). Procedure A is to be used for screening soil known to contain TCE and Procedure B is to be used for screening water known to contain TCE.1.1.1 Both Procedures A and B involve measuring the TCE concentration in the headspace above a sample using a heated diode sensor device. From this measurement, an estimated concentration of TCE in the sample can be determined. Any TCE remaining in the sample is not measured. Any other HVOC present in the sample will be reported as TCE.1.2 Procedure A can also be used for screening the headspace above a soil suspected of containing HVOC contamination to indicate the presence or absence of HVOC contamination in the soil. Procedure B can also be used for screening the headspace above a water suspected of containing HVOC contamination to indicate the presence or absence of HVOC contamination in the water. For both procedures, any HVOC contamination remaining in the soil or water is not detected by this practice.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3.1 Exception—Certain inch-pound units are provided for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: The diode sensor is heated to temperatures ranging between approximately 600 and 1000 °C (see 6.1.5) and as a result could be a source of ignition.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

1.1 This test method covers the measurement of the total-radiance temperature (see section 2.1.20) of surfaces using a radiation pyrometer that is not in contact with the surface. The measured total-radiance temperature is then converted to the "true" surface temperature using an assumed or measured value of the surface emittance.1.2 This test method includes those pyrometers which respond to a wide band of radiant energy (heat), that is, total radiation pyrometers, as well as those which respond to a relatively narrow band of radiant energy, that is, monochromatic or pseudomonochromatic radiation pyrometers. The latter are often referred to as "optical" pyrometers. The visual optical pyrometer, sometimes referred to as a "disappearing-filament" or "brightness" pyrometer, is not covered by this test method.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Most heated apparatus in industrial, commercial, and residential service are insulated, unless thermal insulation interferes with their function; for example, it is inappropriate to insulate the bottom surface of a flatiron. However, surface temperatures of insulated equipment and appliances are potentially high enough to cause burns from contact exposure under certain conditions.5.2 This guide has been developed to standardize the determination of acceptable surface operating conditions for heated systems. Current practice for this determination is widely varied. The intent of this guide is to tie together the existing practices into a consensus standard based upon scientific understanding of the thermal physics involved. Flexibility is retained within this guide for the designer, regulator, or consumer to establish specific burn hazard criteria. Most generally, the regulated criterion will be the length of time of contact exposure.5.3 It is beyond the scope of this guide to establish appropriate contact times and acceptable levels of injury for particular situations, or determine what surface temperature is “safe.” Clearly, quite different criteria are justified for cases as diverse as those involving infants and domestic appliances, and experienced adults and industrial equipment. In the first case, no more than first degree burns in 60 s might be desirable. In the second case, second degree burns in 5 s might be acceptable.NOTE 2: An overview of the medical research leading to the development of this guide was presented at the ASTM Conference on Thermal Insulation, Materials and Systems on Dec. 7, 1984 (14).5.4 This guide is meant to serve only as an estimation of the exposure to which an average individual might be subjected. Unusual conditions of exposure, physical health variations, or nonstandard ambients all serve to modify the results.5.5 This guide is limited to contact exposure to heated surfaces only. It is noted that conditions of personal exposure to periods of high ambient temperature or high radiant fluxes potentially cause human injury with no direct contact.5.6 This guide is not intended to cover hazards for cold temperature exposure, that is, refrigeration or cryogenic applications.5.7 The procedure found in this guide has been described in the literature as applicable to all heated surfaces. For extremely high-temperature metallic surfaces (>70°C), damage occurs almost instantaneously upon contact.1.1 This guide covers a process for the determination of acceptable surface operating conditions for heated systems. The human burn hazard is defined, and methods are presented for use in the design or evaluation of heated systems to prevent serious injury from contact with the exposed surfaces.1.2 The maximum acceptable temperature for a particular surface is derived from an estimate of the possible or probable contact time, the surface system configuration, and the level of injury deemed acceptable for a particular situation.1.3 For design purposes, the probable contact time for industrial situations has been established at 5 s. For consumer products, a longer (60-s) contact time has been proposed by Wu (1)2 and others to reflect the slower reaction times for children, the elderly, or the infirm.1.4 The maximum level of injury recommended here is that causing first degree burns on the average subject. This type of injury is reversible and causes no permanent tissue damage. For cases where more severe conditions are mandated (by space, economic, exposure probability, or other outside considerations), this guide is used to establish a second, less desirable injury level (second degree burns), where some permanent tissue damage is permitted. At no time, however, are conditions that produce third degree burns recommended.1.5 This guide addresses the skin contact temperature determination for passive heated surfaces only. The guidelines contained herein are not applicable to chemical, electrical, or other similar hazards that provide a heat generation source at the location of contact.1.6 A bibliography of human burn evaluation studies and surface hazard measurement is provided in the list of references at the end of this guide (1-16).1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The procedures in this practice support the determination of the burn hazard potential for a heated surface. These procedures provide an estimate of the maximum skin contact temperature and must be used in conjunction with Guide C1055 to evaluate the surface hazard potential.5.2 The two procedures outlined herein are both based upon the same heat transfer principles. Method A uses a mathematical model to predict the contact temperature, while Method B uses a plastic rubber probe having similar heat transfer characteristics to the human finger to “measure” the contact temperature on real systems.5.3 These procedures serve as an estimate for the skin contact temperatures which might occur for the “average” individual. Unusual conditions of exposure, incorrect design assumptions, subject health conditions, or unforeseen operating conditions will potentially negate the validity of the estimations.5.4 These procedures are limited to direct contact exposure only. Conditions of personal exposure to periods of high ambient temperatures, direct flame exposure, or high radiant fluxes will potentially cause human injury in periods other than determined herein. Evaluation of exposures other than direct contact are beyond the scope of this practice.5.5 Cold Surface Exposure—No consensus criteria exists for the destruction of skin cells by freezing. If, at some future time, such criteria are developed, extrapolation of the techniques presented here will serve as a basis for cold surface exposure evaluation.1.1 This practice covers a procedure for evaluating the skin contact temperature for heated surfaces. Two complimentary procedures are presented. The first is a purely mathematical approximation that is used during design or for worst case evaluation. The second method describes the thermesthesiometer, an instrument that analogues the human sensory mechanism and is only used on operating systems.NOTE 1: Both procedures listed herein are intended for use with Guide C1055. When used in conjunction with that guide, these procedures can determine the burn hazard potential for a heated surface.1.2 A bibliography of human burn evaluation studies and surface hazard measurement is provided in the References at the end of Guide C1055. Thermesthesiometer and mathematical modeling references are provided in the References at the end of this practice (1-5).21.3 This practice addresses the skin contact temperature determination for passive heated surfaces only. The analysis procedures contained herein are not applicable to chemical, electrical, or other similar hazards that provide a heat generation source at the location of contact.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The values determined in this test method indicate to what extent a given coal or coal blend will expand or contract during the carbonization process when evaluated in terms of pertinent experience with other coals and coal blends and processing conditions used in commercial-type coke ovens.1.1 This test method covers a large-scale laboratory test for obtaining information on the expansion or contraction of coal or coal blends during carbonization under specified conditions. This test method is applicable in the examination of coals or coal blends intended for use in the manufacture of coke.1.2 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers the material, design, and performance requirements associated with the construction of non-tilting (Type I) and tilting (Type II) jacketed kettles that use steam as a heat source for cooking food in commercial and institutional food service establishments. The kettles shall be available in four styles as follows: Style 1—floor mounted, pedestal; Style 2—floor mounted, with legs; Style 3—wall mounted; and Style 4—cabinetized. The kettles shall be classified into the following classes: Class A—directly connected to an external heat source; Class B—self-contained, gas-fired steam generator; and Class C—self-contained, electric steam generator. They shall also be grouped into three Grades according to maximum working pressure rating, and ten sizes according to capacity. The products shall be evaluated for their conformance with capacity, heating time, and energy utilization requirements.1.1 This specification covers jacketed kettles that use steam as a heat source for cooking food in commercial and institutional food service establishments. This specification does not cover equipment used by food processors who normally package the food that they cook.1.2 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers jacketed kettles using steam as a source of heat for cooking food in commercial and institutional food service establishments. However, it does not cover equipment used by food processors. Covered by this specification are jacketed kettles of various sizes (capacities), grades (Grades 1-3 based on maximum working pressure), styles (Styles 1-5 according to mounting configuration), and classes (Classes A-D based on steam source, whether direct steam or gas-fired or electric steam generator). Kettle and steam jacket shall be manufactured from Type 304, 304L, 316, or 316L corrosion resistant steel. All exterior surfaces of Styles 3-5 kettle stands and bases shall be made of Type 302, 304, 316, or 430 corrosion resistant steel, while those of the kettle mount or support base shall be chrome plated or made of Type 304, 316, or 430 corrosion resistant steel such as for exterior surfaces of console and base of Class B and C kettles. As specified, the kettles shall be provided with the following components: insulation casing, covers and/or operating handles, safety relief valve, swing spout water supply, basket insert, tilt mechanism (hand or crank tilt), kettle mount or support base, control box, safety cut-off, and thermostat. The kettle shall be tested for capacity, heating time, and energy utilization, and shall conform to the requirements specified.1.1 This specification covers jacketed kettles that use steam as a heat source for cooking food in commercial and institutional food service establishments. This specification does not cover equipment used by food processors who normally package the food that they cook.1.2 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
26 条记录,每页 15 条,当前第 2 / 2 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页