微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

4.1 Classification of human land search and rescue resources is based upon the training of the personnel and their ability to perform specific tasks.4.2 Human search and rescue resources are classified by category, kind, and duration.1.1 This classification is intended to identify the common functional units and single resources used in search and rescue operations; to aid search and rescue (SAR) managers and Authorities Having Jurisdiction (AHJs) in assembling or ordering resources for search, rescue, or search and rescue incidents; and to aid in identifying the tasks for which crews have been trained.1.2 This classification is intended as a supplement to the resource typing specifications of the Incident Command System and specifically as a means of typing human resources used in land search and rescue activities.1.3 This classification is suitable for classifying search and rescue crews for land search and rescue incidents.1.4 This classification does not attempt to classify individuals or put forth standards of performance or training for individuals, nor is it meant to convey certification, skill proficiency, or other measures of the level of performance of the resource. These qualifications are the responsibility of the local agencies responsible for utilizing the resource.1.5 This classification identifies human-based resources. Canine crew (or team) classifications are defined in Classification F1848.1.6 This classification does not classify air resources (Guides F2958 and F3026) or water resources (Guides F1739, F1783, and F1824).1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers trailer cycles, intended to be pulled behind bicycles, with seat post attachment, for transporting children. It includes test methods for confirming that this specification is satisfied.1.1 This specification covers trailer cycles, intended to be pulled behind bicycles, with seat post attachment, in order to transport children. It includes test methods for confirming that this specification is satisfied.1.2 The values stated in SI units are to be regarded as the standard. The units given in parentheses are for information only.1.3 The following safety caveat applies to the chemical, mechanical, or physical, or a combination thereof, test methods described herein and is meant specifically for those performing the tests (in an effort to provide them with notice to take the appropriate precautions when conducting the tests). This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers the test methods and corresponding requirements for phase change-type disposable (for one time use only) clinical thermometers used for the intermittent determination of human temperature. When examined using the test methods suggested herein, sampled specimens shall comply with the specified requirements as to temperature range and graduation, accuracy, measurement retention, operating environment, storage environment, toxicity, workmanship, stability, and marking and labeling.1.1 This specification covers phase change-type clinical thermometers that are designed and intended for one-time use.1.2 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Integrating ergonomic principles into new occupational systems may help businesses develop processes that do not exceed worker capabilities and limitations.5.2 Jobs and tasks that conform to worker capabilities and limitations may be performed more efficiently, safely, and consistently than those that do not.5.3 The application of ergonomic principles to the processes involved in occupational systems may help avoid system failures and inefficiencies.5.4 The integration of ergonomic principles at the earliest stages of process concept and design may facilitate appropriate design, layout, and allocation of resources and may reduce or eliminate the necessity for later redesign that could have been foreseen.5.5 Designing jobs that fit the capabilities of larger population segments may increase an organization's accessibility to the available labor pool.5.6 The integration of ergonomic principles into occupational systems may increase profit by lowering direct and indirect costs associated with preventable losses, injuries, and illnesses.5.7 The bibliography contains a list of reference materials that may be useful in particular applications. All appendixes are nonmandatory.1.1 This guide is intended to assist in the integration of ergonomic principles into the design and planning of new occupational systems from the earliest design stages through implementation. Doing so may reduce or eliminate the necessity for later redesign that could have been foreseen.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 689元 / 折扣价: 586

在线阅读 收 藏

1. Scope This International Standard defines the dimensions of male operators of earth-moving machinery and specifies the minimum normal operating space envelope around the operator enclosures (cabs, ROPS, FOPS) generally applicable to earth-moving mac

定价: 410元 / 折扣价: 349

在线阅读 收 藏

6.1 Intended Use—Compliance with this practice provides the procuring organization with assurance that human users will be efficient, effective, and safe in the operation and maintenance of marine systems, equipment, and facilities. Specifically, it is intended to ensure the following:6.1.1 System performance requirements are achieved reliably by appropriate use and accommodation of the human component of the system.6.1.2 Usable design of equipment, software, and environment permits the human-equipment/software combination to meet system performance goals.6.1.3 System features, processes, and procedures do not constitute hazards to humans.6.1.4 Trade-offs between automated and manual operations results in effective human performance and appropriate cost control.6.1.5 Manpower, personnel, and training requirements are met.6.1.6 Selected HSI design standards are applied that are adequate and appropriate technically.6.1.7 Systems and equipments are designed to facilitate required maintenance.6.1.8 Procedures for operating and maintaining equipment are efficient, reliable, approved for maritime use, and safe.6.1.9 Potential error-inducing equipment design features are eliminated, or at least, minimized, and systems are designed to be error-tolerant.6.1.10 Layouts and arrangements of equipment afford efficient traffic patterns, communications, and use.6.1.11 Habitability facilities and working spaces meet environmental control and physical environment requirements to provide the level of comfort and quality of life for the crew that is conducive to maintaining optimum personnel performance and endurance.6.1.12 Hazards to human health are minimized.6.1.13 Personnel survivability is maximized.6.2  and Nature of Work—HSI includes, but is not limited to, active participation throughout all phases in the life cycle of a marine system, including requirements definition, design, development, production, operations and decommissioning. HSI, as a systems engineering process, should be integrated fully into the larger engineering process. For the government, the HSI systems engineering process is manifested in both a more formalized, full scale system acquisition, as well as a non-developmental item acquisition. For the commercial industry, the system acquisition process is less formal and more streamlined. Each process is described below.6.3 Government Formalized, Full Scale Acquisition—The U.S. Government's acquisition process is composed of six steps, as illustrated in Fig. 3. Each phase is briefly summarized below.6.6 Modernization—One key part of operations and support is modernization. In many cases in both government and commercial marine system development, existing designs are modified, retrofitted, or modernized to meet new mission requirements or to implement new technology. In these cases, design activities are focused on the modifications and their integration with the existing design rather than the complete marine system. These design activities follow a systems engineering process, much like new design.6.6.1 HSI activities during modernization may include any of those listed in the following sections but scaled to focus on the modifications and their integration with the existing design. HSI activities should focus on determining the impact of the modifications on existing manpower, personnel, and training (MPT) requirements and identifying how MPT considerations may need to be modified for successful integration. HSI activities also focus on ensuring that modifications are integrated into the existing marine system without any negative implications to human performance, safety, occupational health, survivability or habitability.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

5.1 The purpose of this guide is to provide a logical, tiered approach in the development of environmental health criteria coincident with level and effort in the research, development, testing, and evaluation of new materials for military use. Various levels of uncertainty are associated with data collected from previous stages. Following the recommendation in the guide should reduce the relative uncertainty of the data collected at each developmental stage. At each stage, a general weight of evidence qualifier shall accompany each exposure/effect relationship. They may be simple (for example, low, medium, or high confidence) or sophisticated using a numerical value for each predictor as a multiplier to ascertain relative confidence in each step of risk characterization. The specific method used will depend on the stage of development, quantity and availability of data, variation in the measurement, and general knowledge of the dataset. Since specific formulations, conditions, and use scenarios may not be known until the later stages, exposure estimates can be determined when practical (for example, Engineering and Manufacturing Development; see 6.6). Exposure data can then be used with other toxicological data collected from previous stages in a quantitative risk assessment to determine the relative degree of hazard.5.2 Data developed from the use of this guide are designed to be consistent with criteria required in weapons and weapons system development (for example, programmatic environment, safety and occupational health evaluations, environmental assessments/environmental impact statements, toxicity clearances, and technical data sheets).5.3 Information shall be evaluated in a flexible manner consistent with the needs of the authorizing program. This requires proper characterization of the current problem. For example, compounds may be ranked relative to the environmental criteria of the prospective alternatives, the replacement compound, and within bounds of absolute environmental values. A weight of evidence (evaluation of uncertainty and variability) must also be considered with each criterion at each stage to allow for a proper assessment of the potential for adverse environmental or occupational effects; see 6.8.5.4 This standard approach requires environment, safety, and occupational health (ESOH) technical experts to determine the magnitude of the hazard and system engineers/researchers to evaluate the acceptability of the risk. Generally, the higher developmental stages require a higher managerial level of approval.1.1 This guide is intended to determine the relative environmental influence of new substances, consistent with the research and development (R&D) level of effort and is intended to be applied in a logical, tiered manner that parallels both the available funding and the stage of research, development, testing, and evaluation. Specifically, conservative assumptions, relationships, and models are recommended early in the research stage, and as the technology is matured, empirical data will be developed and used. Munition constituents are included and may include propellants, oxidizers, explosives, binders, stabilizers, metals, dyes, and other compounds used in the formulation to produce a desired effect. Munition systems range from projectiles, grenades, rockets/missiles, training simulators, to smokes and obscurants. Given the complexity of issues involved in the assessment of environmental fate and effects and the diversity of the systems used, this guide is broad in scope and not intended to address every factor that may be important in an environmental context. Rather, it is intended to reduce uncertainty at minimal cost by considering the most important factors related to human health and environmental impacts of energetic materials. This guide provides an outline for collecting data useful in a relative ranking procedure to provide the systems scientist with a sound basis for prospectively determining a selection of candidates based on environmental and human health criteria. The general principles in this guide are applicable to substances other than energetics if intended to be used in a similar manner with similar exposure profiles.1.2 The scope of this guide includes:1.2.1 Energetic and other new/novel materials and compositions in all stages of research, development, test and evaluation.1.2.2 Environmental assessment, including:1.2.2.1 Human and ecological effects of the unexploded energetics and compositions on the environment.1.2.2.2 Environmental transport mechanisms of the unexploded energetics and composition.1.2.2.3 Degradation and bioaccumulation properties.1.2.3 Occupational health impacts from manufacture and use of the energetic substances and compositions to include load, assembly, and packing of the related munitions.1.3 Given the wide array of applications, the methods in this guide are not prescriptive. They are intended to provide flexible, general methods that can be used to evaluate factors important in determining environmental consequences from use of new substances in weapon systems and platforms.1.4 Factors that affect the health of humans as well as the environment are considered early in the development process. Since some of these data are valuable in determining health effects from generalized exposure, effects from occupational exposures are also included.1.5 This guide does not address all processes and factors important to the fate, transport, and potential for effects in every system. It is intended to be balanced effort between scientific and practical means to evaluate the relative environmental effects of munition compounds resulting from intended use. It is the responsibility of the user to assess data quality as well as sufficiently characterize the scope and magnitude of uncertainty associated with any application of this standard.1.6 Integration of disparate information and data streams developed from using the methods described in this guide is challenging and may not be straight-forward. Professional assistance from subject matter experts familiar with the fields of toxicology and risk assessment is advised.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers nonpowered trailers intended to be pulled behind bicycles to transport one or two children with accessory loads with a prescribed maximum weight. It includes methods for strength, impact drop, structural integrity in rollover, tipover resistance, single-occupant trailer, double-occupant trailer, coupling security, and system fatigue tests. The tests confirm that this specification is satisfied. The specification also prescribes colors, reflectors, and flags for conspicuity.1.1 This specification covers a nonpowered trailer intended to be pulled behind a bicycle in order to transport one or two children with an accessory load of a maximum weight of 45.4 kg (100 lb). It includes test methods for confirming that this specification is satisfied.1.2 The values stated in SI units are to be regarded as the standard. The units given in parentheses are for information only.1.3 The following caveat pertains only to the test methods portion, Section 5, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The efficacy of disinfection technologies can be evaluated on finished products, as well as on developmental items.5.2 This practice defines procedures for validation of the aerosol generator, preparation of the test specimen, application of the challenge virus, enumeration of viable viruses, assessing data quality, and calculation of decontamination efficacy.5.3 This practice provides defined procedures for creating droplet nuclei that approximate those produced by human respiratory secretions with particular emphasis on particle size distribution and aerosolization media.5.4 Safety concerns associated with aerosolizing microbial agents are not addressed as part of this practice. Individual users should consult with their local safety authority, and a detailed biological aerosol safety plan and risk assessment should be conducted prior to using this practice. Users are encouraged to consult the manual Biosafety in Microbiological and Biomedical Laboratories7 published by the U.S. Centers for Disease Control and Prevention (CDC).5.5 This practice differs from Test Methods E1052 and E2197 in the presentation of the virus to surface. The aforementioned test methods use liquid inoculum to contaminate carrier surfaces, whereas this practice presents the virus in the absence of water as droplet nuclei.5.6 This practice differs from Test Method E2721 because (1) smaller particles are being formed, (2) the droplets will be dried, thus forming droplet nuclei, prior to application to air-permeable materials, and (3) unique equipment is required to create the droplet nuclei.1.1 This practice is designed to evaluate decontamination methods (physical, chemical, self-decontaminating materials) when used on air-permeable materials contaminated with virus-containing droplet nuclei.1.2 This practice defines the conditions for simulating respiratory droplet nuclei produced by humans.1.3 The practice is specific to influenza viruses, but could be adapted for work with other types of respiratory viruses or surrogates.1.4 This practice is suitable only for air-permeable materials.1.5 This practice does not address the performance of decontaminants against microbes expelled via blood splatter, vomit, or fecal contamination.1.6 This practice should be performed only by those trained in bioaerosols, microbiology, or virology, or combinations thereof.1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 The efficacy of disinfection technologies can be evaluated on finished products, as well as on developmental items.5.2 This practice defines procedures for validation of the droplet generator, preparation of the test specimen, application of the challenge virus, enumeration of viable viruses, assessing data quality, and calculation of decontamination efficiency.5.3 This practice provides defined procedures for creating droplets that approximate those produced by human respiratory secretions, with particular emphasis on droplet size distribution and aerosolization media.5.4 Safety concerns associated with aerosolizing microbial agents are not addressed as part of this practice. Individual users should consult with their local safety authority, and a detailed biological aerosol safety plan and risk assessment should be conducted prior to using this practice. Users are encouraged to consult the manual Biosafety in Microbiological and Biomedical Laboratories5 published by the U.S. Centers for Disease Control and Prevention (CDC).5.5 This practice differs from Test Methods E1052 and E2197 in the presentation of virus to the surface. The aforementioned test methods use a liquid inoculum to contaminate carrier surfaces, whereas this practice presents the virus in droplets that are representative of human respiratory secretions5.6 This practice differs from Practice E2720, because (1) larger droplets are being formed, (2) the droplets will not be completely dried prior to application to surfaces, (3) the droplets can be applied to any surfaces, not just those that are air permeable, and (4) unique equipment is required to create droplets.1.1 This practice is designed to evaluate decontamination methods (physical, chemical, self-decontaminating materials) when used on surfaces contaminated with virus-containing droplets.1.2 This practice defines the conditions for simulating respiratory droplets produced by humans and depositing the droplets onto surfaces.1.3 The practice is specific to influenza viruses but could be adapted for work with other types of respiratory viruses or surrogates.1.4 This practice is suitable for working with a wide variety of environmental surfaces.1.5 This practice does not address the performance of decontaminants against microbes expelled via blood splatter, vomit, or fecal contamination.1.6 This practice should be performed only by those trained in bioaerosols, microbiology, or virology, or combinations thereof.1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This specification covers reusable phase-change-type clinical thermometers.1.2 The following safety hazards caveat pertains only to the test method portion, Section 6, of this specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification promotes the interoperability of health information systems through enabling a single uniform representation of human characteristics at the data layer of healthcare information systems architecture (See Fig. 1).It presents a data structure that allows the recording, storage, editing, and retrieval of human characteristics independent of technology and the language, nationality, or culture of persons or organizations involved in healthcare processes. The intended use of this specification is to promote interoperability at the physical data tier in healthcare information systems, and to enhance the design and development of data subsystems that contain human characteristics data for individuals and populations. The data structures in this specification can be readily transformed into presentation layer structuresfor example, into XML for presentation in the ASTM Continuity of Care Record or the HL7 standard Clinical Document Architecture, or into standard HL7 2.x messages. Clinical uses of this data structure include the classification and storage of human characteristics for individuals and populationsfor example, for use in clinical decision support and epidemiology to compare the individual to populations consistent with best clinical and scientific practices. This specification may be extended for use in veterinary medicine as described in Appendix X1. This extension includes a genus/taxonomy reference and associative entities/tables as cited in ANSI/ADA Specification 1000. This allows the characterization of individual non-human living things, and the inclusion of those of different species into mixed herds.AbstractThis specification presents the standardized representation for the content and structure of human characteristics data for use in healthcare information systems, and may be extended to apply to characteristics of non-human living things, such as in data systems supporting veterinary medicine. This specification covers the logical representation of human characteristics data for individuals and populations, and the physical representation of human characteristics at the data tier of healthcare information systems. Conversely, the following provisions are outside the scope of this specification: the standardization of policy or regulation concerning the employment of human characteristics data described in this specification; the establishment or standardization of legal constraints over the use of human characteristics in conjunction with healthcare clinical or business processes; and addressing or standardizing personal privacy, medicolegal, and system security provisions associated with documenting human characteristics or storing human characteristics data.1.1 This document presents a standardized representation for the content and structure of human characteristics data for use in healthcare information systems. 1.2 This specification may be extended to apply to characteristics of non-human living things, such as in data systems supporting veterinary medicine. 1.3 The following provisions are within the scope of this specification: 1.3.1 Logical representation of human characteristics data for individuals and populations. 1.3.2 Physical representation of human characteristics at the data tier of healthcare information systems. 1.4 The following provisions are outside the scope of this specification: 1.4.1 The standardization of policy or regulation concerning the employment of human characteristics data described in this specification. 1.4.2 The establishment or standardization of legal constraints over the use of human characteristics in conjunction with healthcare clinical or business processes. 1.4.3 Addressing or standardizing personal privacy, medicolegal, and system security provisions associated with documenting human characteristics or storing human characteristics data. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
19 条记录,每页 15 条,当前第 1 / 2 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页