微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

1.1 This test method covers the determination of the breaking load and calculated modulus of rupture of preformed thermal insulation for pipes.1.2 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.3 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are provided for information only.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 Test Methods E119, E1529, and other standard fire resistance test methods specify that throughout the fire-resistance test, a constant superimposed load shall be applied to a load-bearing test specimen to simulate a maximum allowable load condition. This superimposed load shall be the maximum load allowed by design under nationally recognized structural design criteria for the tested floor configuration (that is, joist selection, spacing, and span).4.1.1 For this practice, the nationally recognized structural design criteria to be used to determine the maximum load condition are those for the allowable stress design (ASD) method in the NDS (National Design Specification for Wood Construction).NOTE 1: The NDS should be used to ensure calculation of the superimposed load is in compliance with all applicable provisions of that standard. Appendix X1 describes how to calculate the superimposed load in accordance with the NDS.4.1.2 Alternatively, the standard fire resistance test methods shall be permitted to be conducted by applying a load less than the maximum allowable load in 4.1.1 for the tested configuration; however, these tests shall be identified in the test report as being conducted under restricted loading conditions.4.2 This practice describes procedures for calculating the superimposed load to be applied in standard fire resistance tests of wood floor-ceiling assemblies. Practice D6513 provides a similar methodology for calculating the superimposed load on wood-frame walls.4.3 Statements in either the fire resistance test method standard or the nationally recognized structural design standard supersede any procedures described by this practice.1.1 This practice covers procedures for calculating the superimposed load required to be applied to load-bearing wood-frame floor-ceiling assemblies throughout standard fire-resistance tests.1.2 These calculations determine the maximum superimposed load to be applied to the floor-ceiling assembly during the fire resistance test. The maximum superimposed load, calculated in accordance with nationally-recognized structural design criteria, shall be designed to induce the maximum allowable stress in the wood floor-ceiling fire test configuration being tested.1.3 This practice is only applicable to those wood-frame floor-ceiling assemblies for which the nationally recognized structural design criteria are contained in the National Design Specification for Wood Construction (NDS).1.4 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.5 The values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The effect of dynamic rolling load over resilient floor covering system is important since the resistance reflects the ability of a resilient floor covering system to properly perform under specific use or condition.4.2 Excessive rolling load over an installed resilient floor covering may cause floor covering system failures such as bond failure, delamination, and finish or coating deteriorations.4.3 The effect of dynamic rolling load shall be measured by qualitative evaluation comparing the tested assembly with a standard assembly.1.1 This practice covers the determination of the effect of dynamic rolling load over a resilient floor covering.1.2 This practice is intended to be used by resilient, adhesive and underlayment manufacturers to measure the impact of a dynamic rolling load over a specific product or a combination of products.1.3 This practice may be used to evaluate the performance of joints (sealed or welded) in the resilient floor covering.1.4 This practice may be used to aid in the diagnosis of a specific assembly performance and provide comparative evaluation.1.5 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
ASTM F2120-06(2014) Standard Practice for Testing Treestand Load Capacity (Withdrawn 2019) Withdrawn, Replaced 发布日期 :  1970-01-01 实施日期 : 

5.1 This practice is provided to develop and maintain uniformity in practices for the evaluation of the load capacity of treestands, particularly with regard to quality assurance and safety factors.5.2 It is emphasized that the use of these procedures will not alter the validity of data determined with specific test methods, but provides guidance in the interpretation of test results (valid or invalid) and guidance in the selection of a reasonable test procedure in those instances where no standard exists today.1.1 This practice provides guidance for testing the load capacity of treestands.1.2 The values stated are in inch-pound units and are to be regarded as the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 The test method provides information regarding the behavior of a non-structural A, B, or C-Class bulkhead panel system under a static load. Test data for load, moment and deformation is measured.4.2 Static load test of non-structural marine joiner panel systems provide a standard method of obtaining data for research and development, quality control, acceptance or rejection under specifications, and special purposes. The tests cannot be considered significant for engineering design in applications differing widely from the loading type and magnitude of the standard test. Such applications shall require additional tests.1.1 This test method covers a procedure for evaluating the strength of non structural marine joiner of A, B, and C-Class bulkhead and liner systems. A, B, and C-Class bulkheads are defined and discussed in 2.1.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 In the distribution system for many products there is a phase wherein the packaged product may be stored for a period of time in a manner such that one or more containers are superimposed one upon the other. Failure can occur in any layer4 (see Fig. 1 and Fig. 3).FIG. 1 Containers Under Constant Load of Dead Weights Imposed by Other ContainersFIG. 2 Container Under Constant Load of Dead WeightsFIG. 3 Containers Under Constant Load in Compression Test Machine With Fixed Platen4.2 This test method subjects a container, empty or filled, to a predetermined static load, and to specified atmospheric conditions, if required.1.1 This test method is designed to determine the resistance of a shipping container to a vertically applied constant load for either a specified time or to failure. The test method may also be used for palletized or unitized load configurations.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Section 6.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This practice is provided to develop and maintain uniformity for the evaluation of the load capacity of ladder and tripod type stands and climbing sticks, particularly with regard to quality assurance and safety factors.5.2 It is emphasized that the use of these procedures will not alter the validity of data determined with specific test methods, but provides guidance in the interpretation of test results (valid or invalid) and guidance in the selection of a reasonable test procedure in those instances where no standard exists today.1.1 This practice provides guidance for testing the load capacity of ladder and tripod type treestands. This practice also applies to climbing sticks which shall meet the same requirements as the steps to ladder and tripod type stands. For changes to this specification since the last issue, refer to the Summary of Changes section at the end of the standard.1.2 The values stated are in inch-pound units and are to be regarded as the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This test method simulates the hydrostatic loading conditions which are often present in actual sandwich structures, such as marine hulls. This test method can be used to compare the two-dimensional flexural stiffness of a sandwich composite made with different combinations of materials or with different fabrication processes. Since it is based on distributed loading rather than concentrated loading, it may also provide more realistic information on the failure mechanisms of sandwich structures loaded in a similar manner. Test data should be useful for design and engineering, material specification, quality assurance, and process development. In addition, data from this test method would be useful in refining predictive mathematical models or computer code for use as structural design tools. Properties that may be obtained from this test method include:5.1.1 Panel surface deflection at load,5.1.2 Panel face-sheet strain at load,5.1.3 Panel bending stiffness,5.1.4 Panel shear stiffness,5.1.5 Panel strength, and5.1.6 Panel failure modes.1.1 This test method determines the two-dimensional flexural properties of sandwich composite plates subjected to a distributed load. The test fixture uses a relatively large square panel sample which is simply supported all around and has the distributed load provided by a water-filled bladder. This type of loading differs from the procedure of Test Method C393, where concentrated loads induce one-dimensional, simple bending in beam specimens.1.2 This test method is applicable to composite structures of the sandwich type which involve a relatively thick layer of core material bonded on both faces with an adhesive to thin-face sheets composed of a denser, higher-modulus material, typically, a polymer matrix reinforced with high-modulus fibers.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. Within the text the inch-pound units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
ASTM F2126-06(2018) Standard Test Method for Treestand Static Load Capacity (Withdrawn 2022) Withdrawn, Replaced 发布日期 :  1970-01-01 实施日期 : 

5.1 This test method is intended for quality assurance and production control purposes.1.1 This test method covers the determination of the static load capacity of treestands in terms of a factor of safety relative to the manufacturer's rated capacity.1.2 The values stated are in inch-pound units and are to be regarded as the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 This test method is designed to provide load versus deformation response of plastics under essentially multi-axial deformation conditions at impact velocities. This test method further provides a measure of the rate sensitivity of the material to impact.4.2 Multi-axial impact response, while partly dependent on thickness, does not necessarily have a linear correlation with specimen thickness. Therefore, results must be compared only for specimens of essentially the same thickness, unless specific responses versus thickness formulae have been established for the material.4.3 For many materials, there are cases where a specification that requires the use of this test method, but with some procedural modifications that take precedence when adhering to the specification. Therefore, it is advisable to refer to that material specification before using this test method. Table 1 of Classification System D4000 lists the ASTM materials standards that currently exist.1.1 This test method covers the determination of puncture properties of rigid plastics over a range of test velocities.1.2 Test data obtained by this test method are relevant and appropriate for use in engineering design.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: This standard and ISO 6603-2 address the same subject matter, but differ in technical content. The technical content and results shall not be compared between the two test methods.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Field tests provide the most reliable relationship between the axial load applied to a deep foundation and the resulting axial movement. Test results may also provide information used to assess the distribution of side shear resistance along the element, the amount of end bearing developed at the element toe, and the long-term load-deflection behavior. The engineer may evaluate the test results to determine if, after applying appropriate factors, the element or group of elements has a static capacity, load response and a deflection at service load satisfactory to support the foundation. When performed as part of a multiple-element test program, the engineer may also use the results to assess the viability of different sizes and types of foundation elements and the variability of the test site.5.2 If feasible, and without exceeding the safe structural load on the element or element cap (hereinafter unless otherwise indicated, “element” and “element group” are interchangeable as appropriate), the maximum load applied should reach a failure load from which the engineer may determine the axial static compressive load capacity of the element. Tests that achieve a failure load may help the engineer improve the efficiency of the foundation design by reducing the foundation element length, quantity, or size.5.3 If deemed impractical to apply axial test loads to an inclined element, the engineer may elect to use axial test results from a nearby vertical element to evaluate the axial capacity of the inclined element. Or, the engineer may elect to use a bi-directional axial test on an inclined element (Test Methods D8169).NOTE 1: The quality of the result produced by this test method is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/ inspection/and the like. Users of this test method are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.5.4 Different loading test procedures may result in different load-displacement curves. The Quick Test (10.1.2) and Constant Rate of Penetration Test (10.1.4) typically can be completed in a few hours. Both are simple in concept, loading the element relatively quickly as load is increased. The Maintained Test (10.1.3) loads the element in larger increments and for longer intervals which could cause the test duration to be significantly longer. Because of the larger load increments the determination of the failure load can be less precise, but the Maintained Test is thought to give more information on creep settlements (settlement due to consolidation is beyond the capability of the test procedures described in this standard). Although control of the Constant Rate of Penetration Test is somewhat more complicated (and uncommon for large diameter or capacity elements), the test may produce the smoothest curve and thus the best possible definition of capacity. The engineer must weigh the complexity of the procedure and other limitations against any perceived benefit of a smoother curve.5.5 The scope of this standard does not include analysis for foundation capacity, but in order to analyze the test data appropriately it is important that information on factors that affect the derived mobilized axial static capacity are properly documented. These factors may include, but are not limited to the following:5.5.1 Potential residual loads in the element which could influence the interpreted distribution of load at the element tip and along the element shaft.5.5.2 Possible interaction of friction loads from test element with upward friction transferred to the soil from anchor elements obtaining part or all of their support in soil at levels above the tip level of the test element.5.5.3 Changes in pore water pressure in the soil caused by element driving, construction fill, and other construction operations which may influence the test results for frictional support in relatively impervious soils such as clay and silt.5.5.4 Differences between conditions at time of testing and after final construction such as changes in grade or groundwater level.5.5.5 Potential loss of soil supporting the test element from such activities as excavation and scour.5.5.6 Possible differences in the performance of an element in a group or of an element group from that of a single isolated element.5.5.7 Effect on long-term element performance of factors such as creep, environmental effects on element material, negative friction loads not previously accounted for, and strength losses.5.5.8 Type of structure to be supported, including sensitivity of structure to settlements and relation between live and dead loads.5.5.9 Special testing procedures which may be required for the application of certain acceptance criteria or methods of interpretation.5.5.10 Requirement that non-tested element(s) have essentially identical conditions to those for tested element(s) including, but not limited to, subsurface conditions, element type, length, size and stiffness, and element installation methods and equipment so that application or extrapolation of the test results to such other elements is valid.1.1 The test methods described in this standard measure the axial deflection of an individual vertical or inclined deep foundation element or group of elements when loaded in static axial compression. These methods apply to all types of deep foundations, or deep foundation systems as they are practical to test. The individual components of which are referred to herein as elements that function as, or in a manner similar to, drilled shafts, cast-in-place piles (augered cast-in-place piles, barrettes, and slurry walls), driven piles, such as pre-cast concrete piles, timber piles or steel sections (steel pipes or wide flange beams) or any number of other element types, regardless of their method of installation. Although the test methods may be used for testing single elements or element groups, the test results may not represent the long-term performance of the entire deep foundation system.1.2 This standard provides minimum requirements for testing deep foundation elements under static axial compressive load. Plans, specifications, and/or provisions prepared by a qualified engineer may provide additional requirements and procedures as needed to satisfy the objectives of a particular test program. The engineer in charge of the foundation design referred to herein as the engineer, shall approve any deviations, deletions, or additions to the requirements of this standard. (Exception: the test load applied to the testing apparatus shall not exceed the rated capacity established by the engineer who designed the testing apparatus).1.3 Apparatus and procedures herein designated “optional” may produce different test results and may be used only when approved by the engineer. The word “shall” indicates a mandatory provision, and the word “should” indicates a recommended or advisory provision. Imperative sentences indicate mandatory provisions.1.4 A qualified geotechnical engineer should interpret the test results obtained from the procedures of this standard so as to predict the actual performance and adequacy of elements used in the constructed foundation.1.5 A qualified engineer (qualified to perform such work) shall design and approve all loading apparatus, loaded members, and support frames. The geotechnical engineer shall design or specify the test procedures. The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard. This standard also includes illustrations and appendices intended only for explanatory or advisory use.1.6 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.7 The gravitational system of inch-pound units is used when dealing with inch-pound units. In this system, the pound [lbf] represents a unit of force [weight], while the unit for mass is slug. The rationalized slug unit is not given, unless dynamic [F=ma] calculations are involved.1.8 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.8.1 The procedures used to specify how data are collected, recorded and calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that should generally be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering data.1.9 The method used to specify how data are collected, calculated, or recorded in this standard is not directly related to the accuracy to which the data can be applied in design or other uses, or both. How one applies the results obtained using this standard is beyond its scope.1.10 The text of this standard references notes and footnotes that provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.11 This standard offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this standard may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project’s many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.1.12 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.13 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
ASTM D1143-81(1994)e1 Standard Test Method for Piles Under Static Axial Compressive Load (Withdrawn 2006) Withdrawn, No replacement 发布日期 :  1970-01-01 实施日期 : 

1.1 This test method covers procedures for testing vertical or batter piles individually or groups of vertical piles to determine response of the pile or pile group to a static compressive load applied axially to the pile or piles within the group. This test method is applicable to all deep foundation units that function in a manner similar to piles regardless of their method of installation. This test method is divided into the following sections: Section Referenced Documents 2 Apparatus for Applying Loads 3 Apparatus for Measuring Movements 4 Loading Procedures 5 Procedures for Measuring Pile Movements 6 Safety Requirements 7 Report 8 Precision and Bias 9 1.2 The values stated in inch-pound units are to be regarded as the standard. Note 1-Apparatus and procedures designated "optional" are to be required only when included in the project specifications or if not specified, may be used only with the approval of the engineer responsible for the foundation design. The word "shall" indicates a mandatory provision and "should" indicates a recommended or advisory provision. Imperative sentences indicate mandatory provisions. Notes, illustrations, and appendixes included herein are explanatory or advisory. Note 2-This test method does not include the interpretation of test results or the application of test results to foundation design. See Appendix XI for comments regarding some of the factors influencing the interpretation of test results. A qualified geotechnical engineer should interpret the test results for predicting pile performance and capacity. The term "failure" as used in this method indicates rapid progressive settlement of the pile or pile group under a constant load. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This test method was designed to be used to validate the long-term resistance to pullout of joints designed for use in plastic natural gas piping systems.5.2 This test method is used in addition to the short-term tests required by OPS Part 192.283b, Title 49. Informal versions of this test method are used by manufacturers and utilities to demonstrate that a joint is resistant to the effects of long-term creep and meets the requirements for classification as a Category 1 or a Category 3 joint in accordance with Specification D2513.5.3 This test method may also be applicable for the determination of the effects of a sustained axial load on joints or other components of plastic piping systems designed for other applications. Test parameters and the internal pressurizing fluid, if any, should be listed in the referencing document.5.4 Documents that reference this test method for products other than joints shall specify test conditions and performance requirements. In general, such products pass this test if they maintain their structural integrity, do not leak, and perform to specification during and after the test.1.1 The constant tensile load joint test (CTLJT) is designed to demonstrate that a joint in a plastic piping system is resistant to the effects of long-term creep.1.1.1 The joint is subjected to an internal pressure at least equal to its operating pressure and a sustained axial tensile load for a specified time period, usually 1000 h. The joint shall not leak, nor may the pipe completely pull out for the test duration. The total axial stress is set by the referencing document.1.1.2 Some typical conditions for testing of joints on polyethylene pipe are described in Appendix X1.1.2 This test is usually performed at 73 °F (22.8 °C).1.3 The CTLJT was developed to demonstrate the long-term resistance to pullout of mechanical joints on polyethylene gas pipe. The CTLJT has also been successfully applied to the evaluation of other components of plastic piping systems. These applications are discussed in Appendix X1.1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method does not purport to interpret the resulting response curve. Such interpretation is left to the parties involved in the commissioning and reporting of the test results.5.2 This test method is intended as an index test and may be used for grading polyolefin geomembrane sheets in regard to their stress-cracking sensitivity.5.2.1 Conditions that can affect stress cracking include: level of loading, test temperature and environment, microstructure, polymer additive package, processing history, and thermal history.5.3 The test method is applicable to smooth, homogeneous polyolefin geomembranes where the two sides are parallel to permit application of the stress on a well-defined surface delimited by the surface of the geomembrane on one side, and the bottom of the notch on the other side.5.4 The test is applicable to textured geomembranes when prepared as described in 8.3.2.5.5 The test may be applicable to multi-component geomembranes (such as white, conductive, or other non-homogeneous sheets) or limited to the evaluation of the base polymer when prepared as described in 8.3.3.5.6 The test is not applicable to bituminous, EPDM, plasticized PVC, and other non-polyolefin geomembranes, as these materials are not susceptible to slow crack growth.5.7 This test method may not be applied to polyolefin geomembranes that do not exhibit a well-defined yield point, such as some VLDPE and LLDPE.1.1 This test method is used to develop test data from which the susceptibility of polyolefin geomembrane sheet material to stress cracking under a constant tensile load condition and an accelerated environmental condition can be evaluated.1.2 This test method measures the failure time associated with a given test specimen at a specified tensile load level. Results from a series of such tests utilizing a range of load levels can be used to construct a stress-time plot on a log-log axis.1.3 The values stated in SI units are to be regarded as the standard. The inch-pound units given in parentheses are provided for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The thermal expansion under load and the 20 to 50 h creep properties of a refractory are useful in characterizing the load-bearing capacity of a refractory that is uniformly heated. Directly applicable examples are blast furnace stoves and glass furnace checkers.1.1 This test method covers the procedure for measuring the linear change of refractory specimens that are subjected to compressive stress while being heated and while being held at elevated temperatures.1.2 This test method does not apply to materials whose strength depends on pitch or carbonaceous bonds unless appropriate atmospheric control is used (see 7.3).1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
114 条记录,每页 15 条,当前第 7 / 8 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页