微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 605元 / 折扣价: 515 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0

在线阅读 收 藏

定价: 605元 / 折扣价: 515 加购物车

在线阅读 收 藏

4.1 This practice shall be used to provide a representative sample of the material for the purpose of testing various properties. The procedures used in sampling shall include the use of every precaution that will assist in obtaining samples that are truly representative of the nature and condition of the CLSM.NOTE 2: The quality of the result produced by this standard is dependent on the competence of the personnel performing it and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/ and the like. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors. Practice D3740 provides a means of evaluating some of these factors.1.1 This practice explains the procedure for obtaining a representative sample of freshly mixed controlled low-strength material (CLSM) as delivered to the project site on which tests are to be performed to determine compliance with quality requirements of the specifications under which the CLSM is furnished (Note 1). This practice includes sampling from revolving-drum truck mixers and from agitating equipment used to transport central-mixed CLSM. This Practice is based on Practice C172 for concrete.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.NOTE 1: Composite samples are required by this practice unless specifically excepted by procedures governing the tests to be performed, such as tests to determine uniformity of consistency and mixer efficiency. Procedures used to select the specific test batches are not described in this practice. It is recommended that random sampling be used to determine overall specification compliance.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. (Warning—Fresh hydraulic cementitious mixtures are caustic and may cause chemical burns to skin and tissue upon prolonged exposure.2)1.4 This practice offers a set of instructions for performing one or more specific operations. This document cannot replace education or experience and should be used in conjunction with professional judgement. Not all aspects of this practice may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a projects many unique aspects. The word “standard” in the title of this document means only that the document has been approved through the ASTM consensus process.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method provides quick and accurate ratings for the sensory heat in low heat chilies ranging from 200 to 2500 Scoville heat units.5.2 Sensory results from this test method correlate highly (r2 = 0.94) with results from high-pressure liquid chromatography; making the two methods substitutable.61.1 This test method describes standardized procedures for the sensory evaluation of heat in low heat chili peppers ranging from 200 to 2500 Scoville heat units.1.2 This test method is intended as an alternative to the Scoville heat test (see ASTA Method 21.0 and ISO 3513), but results can be expressed in Scoville heat units (S.H.U.).1.3 This test method does not apply for ground red pepper or oleoresin capsicums.1.4 The values stated in SI units are to be regarded as the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 8.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This test method deals with the procedures for the standard practice of performing pulse-echo ultrasonic examination of heat-treated carbon, low-alloy, and martensitic stainless steel castings by the longitudinal-beam technique. Calibration shall be executed by either flat-bottomed hole or back-wall reflection. The instrument to be used for examination shall be the ultrasonic, pulsed, reflection type. Personnel and equipment qualifications, materials preparation, casting and test conditions, data recording methods, and the acceptance standards for both types of testing procedure are all detailed thoroughly.1.1 This practice2 covers the standards and procedures for the pulse-echo ultrasonic examination of heat-treated carbon, low-alloy, and martensitic stainless steel castings.1.2 This practice is to be used whenever the inquiry, contract, order, or specification states that castings are to be subjected to ultrasonic examination in accordance with Practice A609/A609M.1.3 This practice contains two procedures. Procedure A is the original A609/A609M practice and requires calibration using a series of test blocks containing flat-bottomed holes. It also provides supplementary requirements for angle beam testing. Procedure B requires calibration using a back wall reflection from a series of solid calibration blocks.NOTE 1: Ultrasonic examination and radiography are not directly comparable. This examination technique is intended to complement Guide E94/E94M in the detection of discontinuities.1.4 Supplementary requirements of an optional nature are provided for use at the option of the purchaser. The supplementary requirements shall apply only when specified individually by the purchaser in the purchase order or contract.1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.5.1 Within the text, the SI units are shown in brackets.1.5.2 This practice is expressed in both inch-pound units and SI units; however, unless the purchase order or contract specifies the applicable M-specification designation (SI units), the inch-pound units shall apply.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 These test methods for the chemical analysis of metals and alloys are primarily intended as referee methods to test such materials for compliance with compositional specifications, particularly those under the jurisdiction of ASTM Committees A01 on Steel, Stainless Steel, and Related Alloys and A04 on Iron Castings. It is assumed that all who use these test methods will be trained analysts capable of performing common laboratory procedures skillfully and safely. It is expected that work will be performed in a properly equipped laboratory under appropriate quality control practices such as those described in Guide E882.1.1 These test methods cover the chemical analysis of carbon steels, low-alloy steels, silicon electrical steels, ingot iron, and wrought iron having chemical compositions within the following limits:Element  Composition Range, %Aluminum 0.001  to 1.50Antimony 0.002  to 0.03Arsenic 0.0005 to 0.10Bismuth 0.005  to 0.50Boron 0.0005 to 0.02Calcium 0.0005 to 0.01Cerium 0.005  to 0.50Chromium 0.005  to 3.99Cobalt 0.01   to 0.30Columbium (Niobium) 0.002  to 0.20Copper 0.005  to 1.50Lanthanum 0.001  to 0.30Lead 0.001  to 0.50Manganese 0.01   to 2.50Molybdenum 0.002  to 1.50Nickel 0.005  to 5.00Nitrogen 0.0005 to 0.04Oxygen 0.0001 to 0.03Phosphorus 0.001  to 0.25Selenium 0.001  to 0.50Silicon 0.001  to 5.00Sulfur 0.001  to 0.60Tin 0.002  to 0.10Titanium 0.002  to 0.60Tungsten 0.005  to 0.10Vanadium 0.005  to 0.50Zirconium 0.005  to 0.151.2 The test methods in this standard are contained in the sections indicated as follows:  Sections   Aluminum, Total, by the 8-Quinolinol Gravimetric Method (0.20 % to 1.5 %) 124–131Aluminum, Total, by the 8-Quinolinol Spectrophotometric Method (0.003 % to 0.20 %) 76–86Aluminum, Total or Acid-Soluble, by the Atomic Absorption Spectrometry Method (0.005 % to 0.20 %) 308–317Antimony by the Brilliant Green Spectrophotometric Method (0.0002 % to 0.030 %) 142–151Bismuth by the Atomic Absorption Spectrometry Method (0.02 % to 0.25 %) 298–307Boron by the Distillation-Curcumin Spectrophotometric Method (0.0003 % to 0.006 %) 208–219Calcium by the Direct-Current Plasma Atomic Emission Spectrometry Method (0.0005 % to 0.010 %) 289–297Carbon, Total, by the Combustion Gravimetric Method (0.05 % to 1.80 %)—Discontinued 1995  Cerium and Lanthanum by the Direct Current Plasma Atomic Emission Spectrometry Method (0.003 % to 0.50 % Cerium, 0.001 % to 0.30 % Lanthanum) 249–257Chromium by the Atomic Absorption Spectrometry Method (0.006 % to 1.00 %) 220–229Chromium by the Peroxydisulfate Oxidation-Titration Method (0.05 % to 3.99 %) 230–238Cobalt by the Nitroso-R Salt Spectrophotometric Method (0.01 % to 0.30 %) 53–62Copper by the Sulfide Precipitation-Iodometric Titration Method (Discontinued 1989) 87–94Copper by the Atomic Absorption Spectrometry Method (0.004 % to 0.5 %) 279–288Copper by the Neocuproine Spectrophotometric Method (0.005 % to 1.50 %) 114–123Lead by the Ion-Exchange—Atomic Absorption Spectrometry Method (0.001 % to 0.50 %) 132–141Manganese by the Atomic Absorption Spectrometry Method (0.005 % to 2.0 %) 269–278Manganese by the Metaperiodate Spectrophotometric Method (0.01 % to 2.5 %) 9–18Manganese by the Peroxydisulfate-Arsenite Titrimetric Method (0.10 % to 2.50 %) 164–171Molybdenum by the Thiocyanate Spectrophotometric Method (0.01 % to 1.50 %) 152–163Nickel by the Atomic Absorption Spectrometry Method (0.003 % to 0.5 %) 318–327Nickel by the Dimethylglyoxime Gravimetric Method (0.1 % to 5.00 %) 180–187Nickel by the Ion-Exchange-Atomic-Absorption Spectrometry Method (0.005 % to 1.00 %) 188–197Nitrogen by the Distillation-Spectrophotometric Method (Discontinued 1988) 63–75Phosphorus by the Alkalimetric Method (0.02 % to 0.25 %) 172–179Phosphorus by the Molybdenum Blue Spectrophotometric Method (0.003 % to 0.09 %) 19–30Silicon by the Molybdenum Blue Spectrophotometric Method (0.01 % to 0.06 %) 103–113Silicon by the Gravimetric Titration Method (0.05 % to 3.5 %) 46–52Sulfur by the Gravimetric Method (Discontinued 1988) 31–36Sulfur by the Combustion-Iodate Titration Method (0.005 % to 0.3 %) (Discontinued 2017) 37–45Tin by the Sulfide Precipitation-Iodometric Titration Method (0.01 % to 0.1 %) 95–102Tin by the Solvent Extraction-Atomic Absorption Spectrometry Method (0.002 % to 0.10 %) 198–207Titanium by the Diantipyrylmethane Spectrophotometric Method (0.025 % to 0.30 %) 258–268Vanadium by the Atomic Absorption Spectrometry Method (0.006 % to 0.15 %) 239–2481.3 Test methods for the determination of several elements not included in this standard can be found in Test Methods E1019.1.4 Some of the composition ranges given in 1.1 are too broad to be covered by a single test method and therefore this standard contains multiple test methods for some elements. The user must select the proper test method by matching the information given in the and Interference sections of each test method with the composition of the alloy to be analyzed.1.5 The values stated in SI units are to be regarded as standard. In some cases, exceptions allowed in IEEE/ASTM SI 10 are also used.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazards statements are given in Section 6 and in special “Warning” paragraphs throughout these test methods.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 983元 / 折扣价: 836 加购物车

在线阅读 收 藏
ASTM D6734-01(2009) Standard Test Method for Low Levels of Coliphages in Water (Withdrawn 2015) Withdrawn, No replacement 发布日期 :  1970-01-01 实施日期 : 

Coliphage organisms may serve as indicators of fecal contamination. The presence of coliphages in water in the absence of a disinfectant indicates the probable presence of fecal contamination. The absolute relationship between the number of coliforms and coliphages in natural waters has not been conclusively demonstrated. Coliphages are generally more resistant than coliforms to chlorination and may have some advantage over coliforms as an indicator of treatment efficiency in disinfected waters. The detection of coliphages in a water sample depends upon the use of a sensitive host strain in the coliphage assay. Coliphages may be detected by this concentration procedure in 6.5 h to provide important same-day information on the sanitary quality of water. The lower detection limit of this concentration procedure is 1 coliphage per volume of water sample tested.1.1 This test method covers the determination of coliphages infective for E. coli C in water. The test method is simple, inexpensive, and yields an indication of water quality within 6.5 h. This coliphage method can determine coliphages in water down to 1 coliphage per volume of water sampled.1.2 The test method is applicable to natural fresh water samples and to settled, filtered or finished water samples.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This specification covers four grades of carbon steel plates of structural quality for general application. Steel samples shall be melt processed by either open-hearth, basic-oxygen, or electric furnace. Heat and product analysis shall be performed wherein steel materials shall conform to required chemical compositions of carbon, manganese, phosphorus, sulfur, silicon, and copper. Steel specimens shall also undergo tensile tests and shall conform to required values of tensile strength, yield point, and elongation.1.1 This specification2 covers two grades (C and D) of carbon steel plates of structural quality for general application.1.2 When the steel is to be welded, a welding procedure suitable for the grade of steel and intended use or service is to be utilized. See Appendix X3 of Specification A6/A6M for information on weldability.1.3 The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.4 For plate produced from coil and furnished without heat treatment or with stress relieving only, the additional requirements, including additional testing requirements and the reporting of additional test results, of Specification A6/A6M apply.1.5 This specification contains notes or footnotes, or both, that provide explanatory material. Such notes and footnotes, excluding those in tables and figures, do not contain any mandatory requirements.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers uncoated, stress-relieved steel bars for prestressed concrete railroad ties. Analysis of the steel shall conform to the chemical requirements specified by the specification. Mechanical requirements including test method, tensile strength, yield strength, elongation and wrapping test are provided. One test specimen each for the tensile test and the wrapping test shall be taken for every 10 coils or fraction thereof in a lot.1.1 This specification covers low-relaxation steel bars for use in prestressed concrete railroad ties.1.2 This specification is applicable for orders in either inch-pounds units (as Specification A911) or in SI units (as Specification A911M).1.3 The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the specification.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers carbon steel plates of low- and intermediate-tensile strengths which may be made by killed, semi-killed, capped, or rimmed steel. These plates are intended for fusion-welded pressure vessels. Plates are normally supplied in the as-rolled condition. The steel shall conform to the required chemical compositions. The plates, as represented by the tension test specimens, shall conform to the mechanical property requirements.1.1 This specification2 covers carbon steel plates of low- and intermediate-tensile strengths which may be killed or semi-killed at the producer’s option. These plates are intended for fusion-welded pressure vessels.1.2 Plates under this specification are available in three grades having different strength levels as follows:Grade Tensile Strength, ksi [MPa]A 45–65 [310–450]B 50–70 [345–485]C 55–75 [380–515]1.3 The maximum thickness of plates is limited by the capacity of the composition to meet the specified mechanical property requirements.NOTE 1: For killed carbon steels only, refer to the following ASTM specifications:3A299/A299M Specification for Pressure Vessel Plates, Carbon Steel, Manganese-SiliconA515/A515M Specification for Pressure Vessel Plates, Carbon Steel, for Intermediate- and Higher-Temperature ServiceA516/A516M Specification for Pressure Vessel Plates, Carbon Steel, for Moderate- and Lower-Temperature Service1.4 For plates produced from coil and furnished without heat treatment or with stress relieving only, the additional requirements, including additional testing requirements and the reporting of additional test results, of Specification A20/A20M apply.1.5 The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. Combining values from the two systems may result in nonconformance with the specification.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers grades of hot-formed welded and seamless high-strength low-alloy square, rectangular, round, or special shape structural tubing for welded, riveted, or bolted construction of bridges and buildings and for general structural purposes. These grades are: Grade Ia and Ib; Grade II; and Grade III. When the steel is used in welded construction, the welding procedure shall be suitable for the steel and the intended service. The tubing shall be made by the seamless, furnace-buttwelded (continuous-welded), or hot-stretch-reduced electric-resistance-welded process. Tensile test and bend test shall be performed for the material to conform to the requirements specified. If the results of the mechanical tests representing any heat do not conform to a requirement, retests shall be made.1.1 This specification covers grades of hot-formed welded and seamless high-strength low-alloy square, rectangular, round, or special shape structural tubing for welded, riveted, or bolted construction of bridges and buildings and for general structural purposes. When the steel is used in welded construction, the welding procedure shall be suitable for the steel and the intended service.1.2 Square and rectangular tubing is produced with flats of 1 in. to 16 in. [25 mm to 405 mm] and a specified wall thickness of 0.095 in. to 1.0 in. [2.5 mm to 25 mm]. Round tubing is produced with diameters of 1 in. to 48 in. [25 mm to 1220 mm] and a specified wall thickness of 0.095 in. to 2.50 in. [2.5 mm to 65 mm].1.3 This specification covers the following grades: Ia, Ib, II, III, IV, V, VI and VII.1.4 The text of this specification contains notes and footnotes that provide explanatory material. Such notes and footnotes, excluding those in tables and figures, do not contain any mandatory requirements.1.5 This specification is expressed in both inch-pound units and in SI units; however, unless the purchase order specifies the applicable M specification designation (SI units), the inch-pound units shall apply. The values stated in either SI units or inch-pound units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
358 条记录,每页 15 条,当前第 2 / 24 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页