微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

1.1 This document provides guidance and recommendations for the qualification of polymeric materials intended for laser-based powder bed fusion of polymers (PBF-LB/P). The parameters and recommendations presented in this document relate mainly to the material polyamide 12 (PA12), but references are also made to polyamide 11 (PA11). The parameters and recommendations set forth herein cannot be applicable to other polymeric materials.1.2 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 562元 / 折扣价: 478 加购物车

在线阅读 收 藏

1.1 This document addresses installation qualification (IQ), operational qualification (OQ), and performance qualification (PQ) issues directly related to the additive manufacturing system that has a direct influence on the consolidation of material. The first three elements of process validation, process mapping, risk assessment, and validation planning, are necessary pre-conditions to machine qualification, however, they are outside the scope of this document.1.2 This document covers issues directly related to the AM equipment and does not cover feedstock qualification or post processing beyond powder removal.1.3 Physical facility, personnel, process and material issues are only included to the extent necessary to support machine qualification.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This document specifies qualification requirements for coordination personnel in industrial manufacturing sites responsible for additive manufacturing of metal parts.1.2 This document is applicable to all metallic processes that are covered by ISO 17296-2. In this context, the skills, tasks and responsibilities for different levels of AM coordination personnel are typically adapted according to the applicable regulations, depending on the process.1.3 This document is intended to provide guidance and requirements for qualification of coordination personnel in general-industrial applications. Additional requirements are typically needed for specific industries or applications (e.g. aerospace, medical) or to meet regulatory requirements.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This document specifies quality assurance requirements for additive construction (AC) concerning building and construction projects in which additive manufacturing techniques are used for construction. The requirements are independent of the material(s) and process category used.1.2 This document does not apply to metals.1.3 This document specifies the criteria for additive construction processes, quality-relevant characteristics, and factors along AC system operations. It further specifies activities and sequences within an AC cell (additive construction site) and project.1.4 This document applies to all additive manufacturing technologies in building and construction (load bearing and non-load bearing), structural and infrastructure building elements for residential and commercial applications and follows an approach oriented to the process.1.5 This document does not cover environmental, health and safety aspects that apply to printing facility setup, material handling, operating of robotic equipment, and packing of equipment and/or elements for shipping but material supplier guidelines, robotic solution operating guidelines, and local and regional requirements are applicable.1.6 This document does not cover design approvals, material properties characterization and testing.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

1.1 This document specifies the features of MEX/P and provides detailed design recommendations.1.2 Some of the fundamental principles are also applicable to other AM processes, provided that due consideration is given to process-specific features.1.3 This document also provides a state of the art review of design guidelines associated with the MEX/P by bringing together relevant knowledge about this process and by supplementing the scope of ISO/ASTM 52910.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

1.1 This document specifies requirements and test methods for the qualification and re-qualification of laser beam machines for metal powder bed fusion additive manufacturing for aerospace applications.1.2 It can also be used to verify machine features during periodic inspections or following maintenance and repair activities.

定价: 487元 / 折扣价: 414 加购物车

在线阅读 收 藏

5.1 Applying Test Method F390 to large flat panel substrates presents a number of serious difficulties not anticipated in the development of that standard. The following problems are encountered.5.1.1 The four-point probe method may be destructive to the thin film being measured. Sampling should therefore be taken close to an edge or corner of the plate, where the film is expendable. Special geometrical correction factors are then required to derive the true sheet resistance.5.1.2 Test Method F390 is limited to a conventional collinear probe arrangement, but a staggered collinear and square arrays are useful in particular circumstances. Correction factors are needed to account for nonconventional probe arrangements.5.1.3 Test Method F390 anticipates a precision testing arrangement in which the probe mount and sample are rigidly positioned. There is no corresponding apparatus available for testing large glass or plastic substrates. Indeed, it is common in flat panel display making that the probe is hand held by the operator.5.1.4 It is difficult, given the conditions cited in 5.1.3, to ensure that uniform probe spacing is not degraded by rough handling of the equipment. The phased square array, described, averages out probe placement errors.5.1.5 This practice is estimated to be precise to the following levels. Otherwise acceptable precision may be degraded by probe wobble, however (see 8.6.4).5.1.5.1 As a referee method, in which the probe and measuring apparatus are checked and qualified before use by the procedures of Test Method F390 paragraph 7 and this practice, paragraph 8: standard deviation, s, from measured sheet resistance, RS, is ≤ 0.01 RS.5.1.5.2 As a routine method, with periodic qualifications of probe and measuring apparatus by the procedures of Test Method F390 paragraph 7 and this practice, paragraph 8: standard deviation, s, from measured sheet resistance, RS, is ≤ 0.02 RS.1.1 This practice describes methods for measuring the sheet electrical resistance of sputtered thin conductive films deposited on large insulating substrates, used in making flat panel information displays. It is assumed that the thickness of the conductive thin film is much thinner than the spacing of the contact probes used to measure the sheet resistance.1.2 This standard is intended to be used with Test Method F390.1.3 Sheet resistivity in the range 0.5 to 5000 ohms per square may be measured by this practice. The sheet resistance is assumed uniform in the area being probed.1.4 This practice is applicable to flat surfaces only.1.5 Probe pin spacings of 1.5 mm to 5.0 mm, inclusive (0.059 to 0.197 in inclusive) are covered by this practice.1.6 The method in this practice is potentially destructive to the thin film in the immediate area in which the measurement is made. Areas tested should thus be characteristic of the functional part of the substrate, but should be remote from critical active regions. The method is suitable for characterizing dummy test substrates processed at the same time as substrates of interest.1.7 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

1.1 This document provides guidance to designers who are considering the use of metal Laser Powder Bed Fusion (PBF-LB) method for their products. This guide outlines the following post-processing operations that can be considered after completion of a build on a metal additive manufacturing system:1.1.1 Powder removal,1.1.2 Thermal post-processing,1.1.3 Build platform removal,1.1.4 Support removal,1.1.5 Machining, and1.1.6 Surface finishing.1.2 The topics of non-destructive testing (NDT) and inspection are beyond the scope of this document as it requires a comprehensive guide in its own right. Also, outside the scope are other metal PBF processes such as powder bed fusion – electron beam (PBF-EB) and hybrid additive manufacturing (methods combining additive manufacturing and subtractive manufacturing technologies in a single machine).1.3 With respect to existing ISO/ASTM standards, this guide is positioned between ISO/ASTM 52910 and process-specific design guidelines such as ISO/ASTM 52911-1.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

1.1 This document specifies requirements for the qualification of operators of laser metal powder bed fusion machines and equipment for additive manufacturing in aerospace applications.1.2 This document is applicable if the operator qualification testing is required by contract or by application standards in the field of aerospace.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 702元 / 折扣价: 597 加购物车

在线阅读 收 藏

1.1 This document covers the principal considerations which apply to data exchange for additive manufacturing. It specifies terms and definitions which enable information to be exchanged describing geometries or parts such that they can be additively manufactured. The data exchange method outlines file type, data enclosed formatting of such data and what this can be used for.This document— enables a suitable format for data exchange to be specified,— describes the existing developments for additive manufacturing of 3D geometries,— outlines existing file formats used as part of the existing developments, and— enables understanding of necessary features for data exchange, for adopters of this document.1.2 This document is aimed at users and producers of additive manufacturing processes and associated software systems. It applies wherever additive processes are used, and to the following fields in particular:— producers of additive manufacturing systems and equipment including software;— software engineers involved in CAD/CAE systems;— reverse engineering systems developers;— test bodies wishing to compare requested and actual geometries.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 487元 / 折扣价: 414 加购物车

在线阅读 收 藏

1.1 This specification describes a framework for an interchange format to address the current and future needs of additive manufacturing technology. For the last three decades, the STL file format has been the industry standard for transferring information between design programs and additive manufacturing equipment. An STL file contains information only about a surface mesh and has no provisions for representing color, texture, material, substructure, and other properties of the fabricated target object. As additive manufacturing technology is quickly evolving from producing primarily single-material, homogenous shapes to producing multimaterial geometries in full color with functionally graded materials and microstructures. There is a growing need for a standard interchange file format that can support these features.1.2 The additive manufacturing file (AMF) may be prepared, displayed, and transmitted on paper or electronically, provided the information required by this specification is included. When prepared in a structured electronic format, strict adherence to an extensible markup language (XML)(1) schema is required to support standards-compliant interoperability. The adjunct to this specification contains a W3C XML schema and Annex A1 contains an implementation guide for such representation.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.4 This standard also does not purport to address any copyright and intellectual property concerns, if any, associated with its use. It is the responsibility of the user of this standard to meet any intellectual property regulations on the use of information encoded in this file format.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

3.1 Although many additive manufacturing systems are based heavily upon the principles of Computer Numerical Control (CNC), the coordinate systems and nomenclature specific to CNC are not sufficient to be applicable across the full spectrum of additive manufacturing equipment. This terminology expands upon the principles of ISO 841 and applies them specifically to additive manufacturing. Although this terminology is intended to complement ISO 841, if there should arise any conflict, this terminology shall have priority for additive manufacturing applications. For any issues not covered in this terminology, the principles in ISO 841 may be applied.3.2 Furthermore, this terminology does not prescribe the use of any specific existing testing methodologies or standards that practitioners of AM may wish to employ for testing purposes; however, it is expected that practitioners will employ appropriate existing methodologies and standards to test parts made by AM.1.1 This terminology includes terms, definitions of terms, descriptions of terms, nomenclature, and acronyms associated with coordinate systems and testing methodologies for additive manufacturing (AM) technologies in an effort to standardize terminology used by AM users, producers, researchers, educators, press/media, and others, particularly when reporting results from testing of parts made on AM systems. Terms included cover definitions for machines/systems and their coordinate systems plus the location and orientation of parts. It is intended, where possible, to be compliant with ISO 841 and to clarify the specific adaptation of those principles to additive manufacturing.Note 1—The applicability of this standard to cladding has to be evaluated. Discussions are under progress.Note 2—Non-cartesian systems are not covered by this standard.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This specification covers additively manufactured titanium-6aluminum-4vanadium (Ti-6Al-4V) components using full-melt powder bed fusion such as electron beam melting and laser melting. It indicates the classifications of the components, the feedstock used to manufacture Class 1, 2, and 3 components, as well as the microstructure of the components. This specification also identifies the mechanical properties, chemical composition, and minimum tensile properties of the components.1.1 This specification covers additively manufactured titanium-6aluminum-4vanadium (Ti-6Al-4V) components using full-melt powder bed fusion such as electron beam melting and laser melting. The components produced by these processes are used typically in applications that require mechanical properties similar to machined forgings and wrought products. Components manufactured to this specification are often, but not necessarily, post processed via machining, grinding, electrical discharge machining (EDM), polishing, and so forth to achieve desired surface finish and critical dimensions.1.2 This specification is intended for the use of purchasers or producers, or both, of additively manufactured Ti-6Al-4V components for defining the requirements and ensuring component properties.1.3 Users are advised to use this specification as a basis for obtaining components that will meet the minimum acceptance requirements established and revised by consensus of the members of the committee.1.4 User requirements considered more stringent may be met by the addition to the purchase order of one or more Supplementary Requirements, which may include, but are not limited to, those listed in S1-S16.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This guide provides a method for evaluating investments in terms of their financial merits and environmental merits. This guide can be used to answer whether an investment is both economical and environmentally sustainable or if there is a tradeoff between the environmental aspects of manufacturing and profitability. In the event that there are tradeoffs, this guide provides methods for evaluating those tradeoffs.5.2 The financial merits for this guide are typically from the individual stakeholder perspective (for example, owners or investors, or both) or from the perspective of a selection of stakeholders. It is up to the users to decide what financial changes are relevant to them. For instance, if there is a financial cost borne by a third party, the users may opt to exclude it from their analysis, as it is not relevant for them. The environmental merits are from a multi-stakeholder perspective (for example, societal level) and should follow established standards for evaluating environmental aspects of manufacturing. That is, environmental aspects of manufacturing should not be excluded simply because they do not affect the user.1.1 This guide covers techniques for evaluating manufacturing investments from the perspective of environmentally sustainable manufacturing by pairing economic methods of investment analysis with environmental aspect of manufacturing, including manufacturing processes.1.2 The economic techniques discussed include net present value, internal rate of return, payback period, and hurdle rate. These four techniques are deterministic, meaning that they deal with known values that are certain. Probabilistic considerations play no role in determining how these four techniques are deployed. The guide will also move beyond standard deterministic techniques to look at probabilistic methods like the concept of sensitivity analyses with a focus on Monte Carlo analyses.1.3 The techniques can be used by manufacturers, regardless of size or complexity, to make environmentally sustainable decisions, including but not limited to whether to embark on an investment, discontinue a manufacturing line, invest or re-invest in a new project or factory. To outline all possible decision types would constitute a guide in itself.1.4 This guide does not assume specific knowledge of financial techniques on the part of the user, besides some knowledge of discounting. The interested reader is encouraged to follow up and consult outside readings to cover financial techniques beyond the scope of this guide.1.5 This guide uses U.S. dollars, percent change in environmental aspects of manufacturing, and unit change in environmental aspects of manufacturing as its primary units.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Particle characterization, especially particle size distribution, has been an important parameter for quality control (QC) and research and development (R&D) in a very wide variety of industries and markets, anywhere a particulate system is a final product or an intermediate constituent somewhere in the process. But size alone is not a sufficient morphological measurement to use to understand many factors of the complete particle morphology of particulate systems and their effects on other properties. This information is expected to contribute to the understanding of the effects of shape on powder spreadability and flowability in the creation of the bed in powder bed fusion AM and the density and porosity of the final AM parts (definitions in ISO/ASTM 52900 and Terminology B243). Ultimately, specifications can be developed for quality control (QC) tolerances for these shape parameters that can be measured with a straightforward, fast automated analysis1.1 This guide explains how to characterize the quality of metal powder feedstock to additive manufacturing (AM) relative to the powder shape using automated static or dynamic image analysis by optical photography. This guide will describe the method(s) to measure powder shape parameters that can identify potentially detrimental powder characteristics and specifically describe how to identify and quantify the proportion of agglomerates/satellites and other irregularly shaped non-spherical powder particles in a powder batch.1.2 The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
85 条记录,每页 15 条,当前第 2 / 6 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页