微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

1.1 This terminology includes all those terms used in all of the standards under the jurisdiction of Subcommittee E29.01. Terms are defined that are related to the manufacture of standard test sieves and screening media, as well as terms related to the methods, analysis, procedures, and equipment for sizing and separating particles.1.2 Committee E29 on Particle and Spray Characterization feels that it is essential to include terms and definitions explicit to the scope, regardless of whether the terms appear in existing ASTM standards. Terms that are in common usage and appear in common-language dictionaries are generally not included.1.3 Units—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This guide provides information and guidelines for the selection and installation of drainage systems media that are in conjunction with waterproofing systems. This guide is intended to be used in conjunction with Guides C898/C898M, C981, C1471/C1471M, D5898/D5898M, and D6622/D6622M and to provide guidelines for the total waterproofing and drainage system.1.1 This guide makes recommendations for the selection and application of prefabricated drainage media used in conjunction with waterproofing systems on horizontal and vertical surfaces. Drainage media considered include rigid and semi-rigid insulation boards and rigid materials including plastics. This guide considers drainage media as it relates to the performance of the waterproofing system, so its primary focus is draining water away from the membrane. This guide does not cover in detail other aspects or functions of drainage system performance such as efficiency of soil dewatering. The scope of this guide does not cover other drainage media including gravel and filter fabric systems that can be constructed. The scope of this guide does not cover drainage materials or drainage system designs used for vegetative roof systems. Vegetative roof systems require specialized designs.1.2 The committee with jurisdiction over this standard is not aware of any other comparable standards published by other organizations.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.4 This standard may involve hazardous materials, operations and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 If required by the authority having jurisdiction, pressurized gaseous testing media leak testing is conducted after installation to discover and correct or repair leaks or faults in a newly constructed or modified polyethylene pressure piping system before placing the system in service. Leakage or faults usually occur at connections, joints, and mechanical seals where sealing under pressure is required.5.2 Safety is of paramount importance when conducting pressurized gaseous testing media leak tests because testing results include no leaks, leaks, sudden violent rupture, or catastrophic failure.5.3 Systems that contain lower pressure rated or non-pressure rated components that cannot be isolated or removed from exposure to test pressure, or where temporary caps or closures are not practical, are not suitable for testing in accordance with this practice.5.4 Leakage Allowance—Leakage is not allowed for butt, socket and saddle fusion joints, electrofusion joints, and restrained gas-tight mechanical joints. See 7.6. Contact the joint, connection or component manufacturer for leakage correction information if leakage occurs at a joint, connection or component having a mechanical seal. See 9.8.5.5 Poisson-Effect Expansion and Contraction—When test pressure is applied to plastic piping systems that have fully restrained joints such as heat fusion, electrofusion, bolted flanges, etc., either reduction of overall pipe length or an increase in longitudinal stress results from diametrical expansion of the pipe. Disjoining (pull-out) of partially restrained or non-restrained connections or joints such as bell-and-spigot joints having insufficient resistance to pull-out stress or length reduction is possible when partially restrained or unrestrained joints are in-line with the fully restrained test section. To prevent Poisson-effect disjoining of partially restrained or non-restrained joints take measures such as installing external joint restraints (diametrical clamps and tie-rods) on in-line partially restrained or non-restrained joints, installing in-line thrust anchors at the ends of fully restrained piping sections to prevent end movement of the fully restrained section, or isolating a fully restrained test section from piping with unrestrained or partially restrained joints.NOTE 3: A tensile stress applied to a material will cause elongation in the direction of the applied stress, and will cause a decrease in dimension at right angles to the direction of the applied stress. The ratio of decrease to elongation is the Poisson ratio. Under test pressure, piping materials will expand slightly in diameter and contract in length slightly according to the Poisson ratio of the material.1.1 This practice provides information on apparatus, safety, pre-test preparation and procedures for conducting field tests of polyethylene pressure piping systems after installation using gaseous testing media such as unodorized inert non-toxic gas or air, and applying pressure to determine if leaks exist in the system (pneumatic leak testing). This practice applies only to testing to discover leakage. Testing for other purposes such as testing to establish operating pressure is beyond the scope of this practice.1.2 Leak testing with pressurized gaseous testing media shall be used only if one or both of the following conditions exists:1.2.1 The piping system is so designed that it cannot be filled with a liquid, or1.2.2 The piping system service cannot tolerate traces of liquid testing fluid.1.3 Where hydrostatic testing is specified in contract documents or by the authority having jurisdiction, testing using pressurized gaseous testing media (pneumatic) testing shall not be substituted without the express consent and authorization of the authority having jurisdiction.1.4 Some manufacturers prohibit or restrict testing of their products with pressurized gaseous testing media. Contact component manufacturers for information. Where the manufacturer of a test section component prohibits or restricts testing with pressurized gaseous testing media testing in accordance with this practice shall not be used without the express consent and authorization of the authority having jurisdiction and the component manufacturer.NOTE 1: Components that are not suitable for testing with gaseous testing fluid may not be suitable for service with pressurized gaseous fluid.1.5 This practice does not address leak testing using pressurized liquids (hydrostatic testing). For field leak testing using pressurized liquids, see Practice F2164.1.6 This practice does not apply to leak testing of non-pressure, negative pressure (vacuum), or non-PE piping systems. For field acceptance testing of plastic non-pressure sewer lines, see Test Method F1417.1.7 This practice does not apply to fuel gas piping systems that extend from the point of delivery to the appliance connections. For other than undiluted liquefied petroleum gas (LP-Gas) systems, the point of delivery shall be considered to be the outlet of the service meter assembly or the outlet of the service regulator or service shutoff valve where no meter is provided. For undiluted LP-Gas, the point of delivery shall be considered to be the outlet of the final pressure regulator, exclusive of line gas regulators, in the system. Testing for these systems can be found in NFPA 54 / ANSI Z223.1. This practice does not apply to LP-Gas systems covered under NFPA 58.1.8 This practice is intended for use with polyethylene pressure piping that conveys gaseous media under pressure (compressed gas) if the owner or operator or installer of the line does not have an established leak testing procedure that is acceptable to the authority having jurisdiction.1.9 Warning—Failure during a pressurized gaseous testing media leak test can be extremely violent and dangerous because energy that is applied to compress the gaseous testing media and to pressurize the system will both be suddenly released.NOTE 2: To illustrate the violent hazard of failure, assume a 5 Hp compressor is used to raise the test section to test pressure and that it takes 1 h to achieve test pressure. If sudden rupture occurs, energy release may occur in 2 s. Therefore, the horsepower of the energy release would be 5 HP × 1 h × 3600 sec/h / 2 s = 9 000 Hp. Further, if diameter is doubled, energy release is four times greater. For an example test section that is twice the diameter, energy release would be 36 000 Hp.1.10 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. Numbered notes and information in parentheses in the text of the practice are non-mandatory information. Table notes are mandatory information.1.11 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Additional safety information is presented in Section 7 and throughout this practice.1.12 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

Information Technology - Coding of Audio-Visual Objects - Part 12: ISO Base Media File Format AMENDMENT 1: Support for Timed Metadata, Non-Square Pixels and Improved Sample Groups

定价: 182元 / 折扣价: 155

在线阅读 收 藏

5.1 This practice was developed for the rapid determination of gamma-emitting radionuclides in environmental media. The results of the test may be used to determine if the activity of these radionuclides in the sample exceeds the action level for the relevant incident or emergency response. The detection limits will be dependent on sample size, counting configuration, and the detector system in use.5.2 In most cases, a sample container which is large in diameter and short in height relative to the detector will provide the best gamma-ray detection efficiency. For samples of water or other low-Z materials (for example, vegetation), the re-entrant or Marinelli-style beaker may yield the best gamma-ray detection efficiency.5.3 The density of the sample material and physical parameters of the sample container (for example, diameter, height, material) may have significant consequences for the accuracy of the sample analysis as compared to the calibration. For this reason, the ideal calibration material and container (often referred to as ‘geometry’) will be exactly the same as the samples to be analyzed. Differences in sample container or sample matrix may introduce significant errors in detector response, especially at low gamma-ray energies. Every effort should be made to account for these differences if the exact calibration geometry is not available.5.4 This practice establishes an empirical gamma-ray spectrometer calibration using standards traceable to the SI via a national metrology institute (NMI) such as the National Institute of Standards and Technology (NIST) in the United States and the National Physical Laboratory (NPL) in the United Kingdom in a specific geometry selected to ensure that the container, density, and composition of the standard matches that of the samples as closely as possible. However, in some cases it may be beneficial to modify such initial calibrations using mathematical modeling or extrapolations to an alternate geometry. Use of such a model may be acceptable, depending on the measurement quality objectives of the analysis process, and provided that appropriate compensation to uncertainty estimates are included. The use of such calibration models is best supported by the successful analysis of a method validation reference material (MVRM).5.5 This practice addresses the analysis of numerous gamma-emitting radionuclides in environmental media. This practice should be applicable to non-environmental media (for example, urine, debris, or rubble) that have similar physical properties. The key determination of similar physical properties is the ability to demonstrate that the gamma spectrometry system response to the sample configuration is suitably similar to that for which the system is calibrated.5.6 For the analysis of radionuclides with low gamma-ray emission energies (<100 keV), self-absorption of the gamma-rays in the sample matrix can have a significant adverse effect on detection and quantification. The user should verify that instrument calibrations appropriately account for any self-absorption that may result from the sample matrix.5.7 Commonly available energy and efficiency calibration standards cover the energy range of approximately 60 keV to 1836 keV. Results obtained using gamma-ray peaks outside the efficiency calibrated energy range will have greater uncertainty not accounted for in the uncertainty calculations of this practice. Great care should be taken to review the efficiency calibration values and the shape of the efficiency curve outside this range. For greater accuracy in the analysis of radionuclides whose gamma-ray energies are outside this range, a calibration standard which includes radionuclide(s) whose gamma-ray energies span the energy range of radionuclides of interest is advised.1.1 This practice covers the quantification of radionuclides in environmental media (for example, water, soil, vegetation, food) by means of simple preparation and counting with a high-resolution gamma ray detector. Because the practice is designed for rapid analysis, extensive efforts to ensure homogeneity or ideal sample counting conditions are not taken.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers the quality and grading of expanded shale, clay and slate (ESCS) for use as a mineral component of growing media and drainage layer for extensive and intensive vegetative (green) roof systems. ESCS is a lightweight, highly porous and low-density ceramic material produced by expanding and vitrifying select shale, clay or slate in a rotary kiln. The requirements are intended to cover only materials having normal or average gradation characteristics. This specification also describes the materials and manufacture, as well as physical and chemical properties.1.1 This specification covers the quality and grading of the following materials for use as a mineral component of growing media and drainage layer for extensive and intensive vegetative (green) roof systems. The requirements are intended to cover only materials having normal or average gradation characteristics. Procedures covered in this specification are not intended for evaluating the performance nutrients associated with vegetative (green) roof growing media. Where other materials are to be used, appropriate limits suitable to their use must be specified.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.3 This standard offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
39 条记录,每页 15 条,当前第 3 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页