微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 689元 / 折扣价: 586

在线阅读 收 藏
AS 2201.2-2004 Intruder alarm systems Monitoring centres 现行 发布日期 :  2004-07-29 实施日期 : 

定价: 689元 / 折扣价: 586 加购物车

在线阅读 收 藏
AS 2201.2-2001 Intruder alarm systems Monitoring centres 现行 发布日期 :  2001-09-04 实施日期 : 

定价: 689元 / 折扣价: 586 加购物车

在线阅读 收 藏

定价: 156元 / 折扣价: 133 加购物车

在线阅读 收 藏

This specification describes the recommended procedure for identifying the performance and operating requirements to be included in a purchase order for Traffic Monitoring Devices. The traffic monitoring device shall be classified according to the function they perform, that data they provide, the required accuracy of the data, and the conditions under which the device is expected to operate in conformity with the requirements. Acceptance test are divided into two categories: type-approval test and on-site verification test. The accuracy required of a TMD for data acquisition and characterization of vehicles and traffic flow parameters is related to the traffic management or data reporting task supported by the device.1.1 This specification describes the recommended procedure for identifying the performance and operating requirements to be included in a purchase order for Traffic Monitoring Devices. As such, the specification can be referenced by the user and seller when determining compliance with each specified requirement. It is the intent of this specification to have the user require the seller to provide evidence that the brand and model of TMD offered by the seller has passed an applicable Type-approval Test. If the TMD has not previously passed a Type-approval Test, then it is the intent of this specification to have the device type-approved before it is accepted by the user. If the TMD has previously passed a Type-approval Test, then this specification requires that the production version of the device provided by the seller pass an On-site Verification Test before being accepted by the user.1.2 Traffic Monitoring Device—A Traffic Monitoring Device (TMD) is equipment that counts and classifies vehicles and measures vehicle flow characteristics such as vehicle speed, lane occupancy, turning movements, intervehicle gaps, and other parameters typically used to portray traffic movement. TMDs usually contain a sensing element that converts the signal-generating phenomenon (such as, air pulse generated by a vehicle tire passing over a pneumatic tube) into an electrical signal and electronics that amplify, filter, and otherwise condition the signal. Some TMDs provide outputs as relay or solid-state switch closures, while others contain signal processing that translates the signal into the required vehicle and vehicle flow data. TMDs whose outputs are relay or solid state switch closures may be connected to roadside controllers, which process the switch-closure information and convert it into vehicle flow data.1.3 Characterization of Traffic Monitoring Devices—This specification classifies Traffic Monitoring Devices by the functions they perform, the data they provide, the required accuracy of the data, and the conditions under which the device is expected to operate in conformity with the requirements developed through this specification.1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 There is a wide variety of nitration compounds that may be produced and accumulate when oils react with gaseous nitrates formed during the engine combustion process. These nitration products may increase the viscosity, acidity and insolubles in the oil, which may lead to ring sticking and filter plugging. Monitoring of nitration products is therefore an important parameter in determining overall machinery health and should be considered in conjunction with data from other tests such as atomic emission (AE) and atomic absorption (AA) spectroscopy for wear metal analysis (Test Method D5185), physical property tests (Test Methods D445 and D2896), and other FT-IR oil analysis methods for oxidation (Test Method D7414), sulfate by-products (Test Method D7415), and additive depletion (Test Method D7412), which also assess elements of the oil’s condition (1-6).1.1 This test method covers monitoring nitration in gasoline and natural gas engine oils as well as in other types of lubricants where nitration by-products may form due to the combustion process or other routes of formation of nitration compounds.1.2 This test method uses FT-IR spectroscopy for monitoring build-up of nitration by-products in in-service petroleum and hydrocarbon-based lubricants as a result of normal machinery operation. Nitration levels in gasoline and natural gas engine oils rise as combustion by-products react with the oil as a result of exhaust gas recirculation or a blow-by. This test method is designed as a fast, simple spectroscopic check for monitoring of nitration in in-service petroleum and hydrocarbon-based lubricants with the objective of helping diagnose the operational condition of the machine based on measuring the level of nitration in the oil.1.3 Acquisition of FT-IR spectral data for measuring nitration in in-service oil and lubricant samples is described in Practice D7418. In this test method, measurement and data interpretation parameters for nitration using both direct trend analysis and differential (spectral subtraction) trend analysis are presented.1.4 This test method is based on trending of spectral changes associated with nitration in in-service petroleum and hydrocarbon-based lubricants. For direct trend analysis, values are recorded directly from absorption spectra and reported in units of 100*absorbance per 0.1 mm pathlength (or equivalently absorbance units per centimetre). For differential trend analysis, values are recorded from the differential spectra (spectrum obtained by subtraction of the spectrum of the reference oil from that of the in-service oil) and reported in units of 100*absorbance per 0.1 mm pathlength (or equivalently absorbance units per centimetre). Warnings or alarm limits can be set on the basis of a fixed maximum value for a single measurement or, alternatively, can be based on a rate of change of the response measured (1).2 In either case, such maintenance action limits should be determined through statistical analysis, history of the same or similar equipment, round robin tests or other methods in conjunction with the correlation of nitration changes to equipment performance.NOTE 1: It is not the intent of this test method to establish or recommend normal, cautionary, warning or alert limits for any machinery. Such limits should be established in conjunction with advice and guidance from the machinery manufacturer and maintenance group.1.5 This test method is for petroleum and hydrocarbon-based lubricants and is not applicable for ester-based oils, including polyol esters or phosphate esters.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6.1 Exception—The unit for wave numbers is cm-1.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The quality of ground water has become an issue of national concern. Ground-water monitoring wells are one of the more important tools for evaluating the quality of ground water, delineating contamination plumes, and establishing the integrity of hazardous material management facilities.5.2 The goal in sampling ground-water monitoring wells is to obtain samples that meet the DQOs. This guide discusses the advantages and disadvantages of various well sampling methods, equipment, and sample preservation techniques. It reviews the variables that need to be considered in developing a valid sampling plan.1.1 This guide covers sampling equipment and procedures and “in the field” preservation, and it does not include well location, depth, well development, design and construction, screening, or analytical procedures that also have a significant bearing on sampling results. This guide is intended to assist a knowledgeable professional in the selection of equipment for obtaining representative samples from ground-water monitoring wells that are compatible with the formations being sampled, the site hydrogeology, and the end use of the data.1.2 This guide is only intended to provide a review of many of the most commonly used methods for collecting ground-water quality samples from monitoring wells and is not intended to serve as a ground-water monitoring plan for any specific application. Because of the large and ever increasing number of options available, no single guide can be viewed as comprehensive. The practitioner must make every effort to ensure that the methods used, whether or not they are addressed in this guide, are adequate to satisfy the monitoring objectives at each site.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses are provided for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

1.1 This practice is intended to cover the extraction, analysis, and information management pertaining to visible wear debris collected from oil system filters or debris retention screens. Further, it is intended that this practice be a practical reference for those involved in FDA.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

1. Scope 1.1 This Standard sets forth criteria for determining the need for a routine environmental monitoring program. 1.2 This Standard provides guidelines for establishing an environ mental program covering (a) sampling and analysis protocols;

定价: 819元 / 折扣价: 697

在线阅读 收 藏

This practice addresses coal mining geospatial environmental monitoring resource data relative to SMCRA and 30 CFR Part 700, et seq. This practice is significant to the coal mining community because it provides uniformity of geospatial data pertaining to environmental resource location points throughout the United States. This standard is one of several coal mining geospatial data standards to be developed for use by an RA. These standards will help ensure uniformity of coal mining geospatial data used in internal business practices, exchanged among business partners within the coal mining community, and contributed by each ADS in future efforts to create national datasets describing coal mining in the United States. Use of this standard will result in organized and accessible data to support programmatic decisions and work plan development, increased awareness of the permitted coal mining operations throughout the United States and better communication between the RA, other governmental entities, the public, and industry.Coal mining geospatial data shall be obtained from state, tribal, and federal regulatory authorities for SCMO. The coal mining community encompasses all entities directly and indirectly affected by coal mining activities, including industry, environmental groups, the general public, and the government at all levels within the United States. Use of this standard will help create consistent maps and increase understanding of SCMO sites throughout the United States. This standard promotes the creation of well organized and easily accessible coal mining data, and it will facilitate better communication between state and federal offices, the public, industry, and environmental groups.Within its area of exclusive jurisdiction, each RA is the ADS for coal mining spatial data that it creates and uses to regulate mining activity.This geospatial data standard will help ensure uniformity of data contributed by each RA and assist organizations in efforts to create, utilize, and share geospatial data relative to SMCRA and it will lead to better communication between state, tribal, and federal regulatory offices, the public, and industry.In addition to a defining ERML, this standard over time will allow identification of changes in the ERML’s as the mined area changes.Participation in the compilation of spatial data is not uniform across RAs, which may affect completeness, both in terms of spatial data, and associated attributes.This standard conforms to the definition of a Data Content Standard as promulgated by the U.S. Federal Geographic Data Committee (FGDC). Terminology and definitions for identifying geographical features and describing the data model has been adopted from the FGDC Spatial Data Transfer Standard (ANSI INCITS 320-1998 (R2003)) and the FGDC Framework Data Content Standard (FGDC Project 1574-D) and other geographic area boundaries.Although this standard is written specifically for the coal mining industry, its general purpose and content are applicable to other mining operations.1.1 This practice covers the minimum elements for the accurate location and description of geospatial data for defining a coal mining environmental resource monitoring location (ERML).1.1.1 This practice addresses coal mining geospatial environmental resource monitoring data relative to the Surface Mining Control and Reclamation Act of 1977 (SMCRA). This geospatial data shall be obtained from each state, tribal, or federal, or combinations thereof, coal mining regulatory authority (RA) authorized under SMCRA to regulate surface coal mining operations (SCMO). Each RA shall be the authoritative data source (ADS) for coal mining geospatial data.1.1.2 As used in this practice, coal mining ERML’s represents points where surface, groundwater, and geologic drill hole chemistry are used to determine any probable hydrologic consequences where coal removal, reclamation and related supporting activities has occurred, is occurring, or is planned and authorized by the RA within a defined SCMO. These locations may also include dam safety, impoundments, diversions, air quality, air blasts (blasting), construction (refuse piles), and subsidence.1.1.3 This standard is one of several that have been approved or are in development related to SMCRA approved coal mining operations. Also under development is a terminology standard. Initial development of these standards is being done on an individual basis; however, they may be consolidated to reduce repetition of information between them.1.2 This practice applies to pre-SMCRA and post-SMCRA ERML’s.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulator limitations prior to use.1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.5 This practice offers a set of instructions for performing one or more specific operations. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this practice may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project’s many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 These test methods provide a field technique for the bacteriological analysis of electronic process waters. The sampling of these waters and subsequent bacteriological analysis may be critical to electronic product yields. Bacteria can be the prime source of harmful contamination which can significantly reduce the yield of satisfactory microelectronic device production.5.2 The test methods described here may be used both to monitor the bacteriological quality of water used in microelectronic product processing, and to locate the source of bacterial contamination in a water purification system.5.3 These test methods are simple field methods, combining sampling and bacteriological analysis techniques that do not require bacteriological laboratory facilities.5.4 The test methods described employ culture techniques for bacteriological analysis. The user should be aware that such techniques cannot provide a complete count of the total viable bacteria present, since clumps and clusters of bacteria will appear as one single colony when cultured, and since some viable bacteria will not grow under the test conditions used. However, a meaningful comparative bacteria count will be achieved by this method if the culturing of the sample is always done at the same temperature, and for the same period of time. The temperature of incubation should always be at 28 ± 2°C, and the period of incubation should be 48 h (or 72 h if time permits). The period of incubation and temperature should be the same for all comparative studies.1.1 These test methods cover sampling and analysis of high purity water from water purification systems and water transmission systems by the direct sampling tap and filtration of the sample collected in the bag. These test methods cover both the sampling of water lines and the subsequent microbiological analysis of the sample by the culture technique. The microorganisms recovered from the water samples and counted on the filters include both aerobes and facultative anaerobes.1.2 Three methods are described as follows:  SectionsTest Method A—Sample Tap—Direct Filtration 6 to 8Test Method B—Presterilized Plastic Bag Technique 9 to 12Test Method B2 —Dip Strip Technique2/Presterilized Plastic Bag  1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 Geomembranes are used as impermeable barriers to prevent liquids leaking out of landfills, ponds, and other containment facilities. In addition, geomembranes are also used to prevent external liquids leaking into to these types of facilities (for example, floating covers, landfill caps, and roofs of storage tanks). The liquids may contain contaminants that, if released, can cause damage to the environment or damage to the contents where protection is against leakage into the facility. In the case of a landfill cap, leakage increases the amount of leachate that the landfill can produce. Leaking liquids can erode the subgrade, causing further damage. Leakage can result in product loss or otherwise prevent the installation from performing its intended containment purpose. For these reasons, it is desirable that the geomembrane have as little leakage as practical.4.2 Geomembrane leaks can be caused by poor quality of the subgrade, poor quality of the material placed on the geomembrane, accidents, poor workmanship, manufacturing defects, and carelessness.4.3 The most significant causes of leaks in geomembranes that are covered with only water are related to construction activities, including pumps and equipment placed on the geomembrane, accidental punctures, punctures caused by traffic over rocks or debris on the geomembrane or in the subgrade, and ruptures caused by settlement during filling.4.4 The most significant cause of leaks in geomembranes covered with earthen materials is construction damage caused by machinery that occurs while placing the earthen material on the geomembrane. Such damage also can breach additional layers of the lining system such as geosynthetic clay liners.4.5 As a practical measure, other electrical leak location methods (see Guide D6747) should be used in conjunction with the permanent monitoring system to eliminate leaks in the installed geomembrane(s) as part of facility construction. Such methods must include testing of the exposed geomembrane before covering and before commissioning a permanent monitoring system. Then the permanent monitoring system can be used in conjunction with other cover geomembrane testing methods to quickly detect and locate all leaks caused by the covering process.4.6 Permanent electric leak location monitoring methods are used to first detect and then subsequently locate leaks for repair during the whole life of the geomembrane. They are designed to detect and locate leaks at the end of the construction phase and during the operational and closure phases and also to monitor any post-closure phases. These practices can easily achieve a zero-leak condition at the conclusion of the measurement(s) at the end of the construction phase. If any of the requirements for measurement area preparation and testing procedures is not adhered to, however, then leaks can remain in the geomembrane after the construction phase completion measurement. On some sites it may not be practicable to achieve, but the closer the site can be designed (and carefully constructed to that design), the closer it will reach the ideal zero-leak condition.4.7 Through the life of the facility monitored by an electric leak location system, leaks that are detected can be repaired. Often the difficulties of carrying out a repair are cited as a reason for not applying this method. However, history has shown that it may be better to know, in order to minimize late-life remedial work, by repairing leaks in a sector of a site rather than entirely exhuming and relocating (waste, for example) to a new site.4.8 A permanent electric leak location monitoring system must last longer than the geomembrane it is designed to monitor, otherwise failure caused by degradation of that material will not be detected. To achieve this, all buried components and the associated electrical connections must be designed in such a way as to achieve this and additionally must avoid metallic corrosion of the buried components and/or critical connections.1.1 These practices describe standard procedures for using electrical methods to locate leaks in geomembranes covered with liquid, earthen materials, waste, and/or any material deposited on the geomembrane.1.2 These practices are intended to ensure that permanent leak detection and location systems are effective, which can result in complete containment (no leaks in the geomembrane).1.3 Not all sites will be easily amenable to this method, but some preparation can be performed in order to enable this method at nearly any site as outlined in Section 6. If ideal testing conditions cannot be achieved (or designed out), the method can still be performed, but any issues with site conditions must be documented.1.4 Permanent monitoring systems for electrical leak detection and location can be used on geomembranes installed in basins, ponds, tanks, ore and waste pads, landfill cells, landfill caps, and other containment facilities including civil engineering structures. The procedures are applicable for geomembranes made of materials such as polyethylene, polypropylene, polyvinyl chloride, chlorosulfonated polyethylene, bituminous material, and other sufficiently electrically insulating materials.1.5 Any permanent electrical monitoring system must detect the occurrence of a leak through the geomembrane, and it must last longer than the monitored geomembrane by nature of the concept. Therefore, all buried components and mechanical and electrical connections must be made of material either the same as the geomembrane, in case of sensors situated above geomembrane, or made from a material with a longer lifespan in cases where they are situated under the monitored geomembrane.1.6 Permanent electrical monitoring systems are comprised of either large mesh pads separated by nominal spaces, or a grid of sensors situated either below the geomembrane or above the geomembrane or in both positions (below and above the geomembrane). In specific cases, sensors may be situated only at the perimeter of the monitored lined facility.1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.8 The electrical methods used for geomembrane leak location should be attempted only by qualified and experienced personnel. Appropriate safety measures should be taken to protect the leak location operators, as well as other people at the site.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is intended for the application of PQ magnetometry in assessing the progression of wear in machinery, for example, engines and gearboxes, by trending the mass of ferrous debris in samples of lubricating oils or greases.5.2 In-service oil analysis is carried out routinely by commercial laboratories on a wide range of samples from many sources and is accepted as a reliable means of monitoring machinery health by trend analysis. In particular, the extent of wear can be readily assessed from any changes in the ferrous debris burden within periodically extracted samples as reflected in the PQ Index.5.3 PQ measurements can be used as a means of rapidly screening samples for the presence or absence of ferrous wear debris, allowing quick decisions to be made on whether or not to proceed to a more detailed spectroscopic analysis for probable wear metals in the sample.5.4 The use of standardized sample containers and a consistent protocol enables reliable trending information to be recorded. Although it is not possible to assign general limits or thresholds for abnormal conditions, it is recommended that interpretation of PQ values should be carried out in consultation with historical data, equipment logs, and/or service history in order to formulate guidelines on individual items of machinery. Guide D7720 is particularly useful in this context.1.1 This test method describes the use of offline particle quantification (often referred to as PQ) magnetometers to trend wear rates in machinery by monitoring the amount of ferromagnetic material suspended in a fluid sample that has been in contact with the moving parts of the machinery. It is particularly relevant to monitoring wear debris in lubricating oils and greases.1.2 The values stated in SI units are to be regarded as standard. Values of the burden (mass) of ferrous wear debris in the sample are reported as a PQ Index. The PQ Index is a numerical value that scales with the ferrous debris burden.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
128 条记录,每页 15 条,当前第 1 / 9 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页