微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 260元 / 折扣价: 221 加购物车

在线阅读 收 藏

This test method covers measurement techniques for calorimetrically determining the ratio of solar absorptance to hemispherical emittance using a steady-state method, and for calorimetrically determining the total hemispherical emittance using a transient technique. The main elements of the apparatus include a vacuum system, a cold shroud within the vacuum chamber, instrumentation for temperature measurement, and a solar simulator. Any type of coating may be tested by this test method provided its structure remains stable in vacuum over the temperature range of interest. The substrate shall be machined from flat stock and to a size proportioned to the working area of the chamber.1.1 This test method covers measurement techniques for calorimetrically determining the ratio of solar absorptance to hemispherical emittance using a steady-state method, and for calorimetrically determining the total hemispherical emittance using a transient technique.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The results of this practice may be used to distinguish tar-based emulsion from an asphalt-based emulsion for specification compliance purposes.1.1 This practice uses infrared analytical techniques to qualitatively determine in the laboratory a ratio of aromatic absorbance to aliphatic absorbance. This practice may be used to determine if the bitumen in the emulsion is predominantly aromatic or aliphatic in nature.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM D2533-99 Standard Test Method for Vapor-Liquid Ratio of Spark-Ignition Engine Fuels (Withdrawn 2008) Withdrawn, No replacement 发布日期 :  1970-01-01 实施日期 : 

The tendency of a fuel to vaporize in common automobile fuel systems is indicated by the vapor-liquid ratio of that fuel at conditions approximating those in critical parts of the fuel systems.1.1 This test method covers a procedure for measuring the volume of vapor formed at atmospheric pressure from a given volume of gasoline. The ratio of these volumes is expressed as the vapor-liquid (V/L) ratio of the gasoline at the temperature of the test. 1.2 Dry glycerol can be used as the containing liquid for nonoxygenated fuels. 1.3 Mercury can be used as the containing liquid with both oxygenated and nonoxygenated fuels. Because oxygenates in fuels may be partially soluble in glycerol, gasoline-oxygenate blends must be tested using mercury as the containing fluid. Note 1-Test Method D4815 can be used to determine the presence of oxygenates in fuels. 1.4 The values stated in both inch-pound and SI units are to be regarded separately as the standard. The units given in parentheses are for information only. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 7 and Note 10.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 The quality of a neutron radiographic image is dependent upon many factors. The L/D ratio is one of those factors and constitutes a numerical definition of the geometry of the neutron beam. The L/D ratio required for a specific neutron radiographic examination is dependent upon the thickness of the specimen and the physical characteristics of the particular element of interest. Use of this test method allows the radiographer and the user to determine and periodically measure the effective collimation ratio.1.1 This test method defines an empirical technique for the measurement of the effective collimation ratio, L/D, of neutron radiography beams. The technique is based upon analysis of a neutron radiographic image and is independent of measurements and calculations based on physical dimensions of the collimation system. The values derived by this technique should be more accurate than those based on physical measurements, particularly for poorly defined apertures.1.2 This test method covers both the manufacture and use of the device to measure L/D ratios.1.3 Neutron images for this method can be produced on radiographic film using an appropriate conversion screen as detailed in Guide E748 or a CR screen with appropriate neutron converter. The method has not been validated with images produced by digital detector arrays.1.4 This test method only applies to neutron beam lines with cold or thermal neutron spectrums.1.5 Units—The values stated in SI units are to be regarded as standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method may be used for material development, characterization, design data generation, and quality control purposes. It is specifically appropriate for determining the modulus of advanced ceramics that are elastic, homogeneous, and isotropic.5.1.1 This test method is nondestructive in nature. Only minute stresses are applied to the specimen, thus minimizing the possibility of fracture.5.1.2 The period of time during which measurement stress is applied and removed is of the order of hundreds of microseconds. With this test method it is feasible to perform measurements at high temperatures, where delayed elastic and creep effects would invalidate modulus measurements calculated from static loading.5.2 This test method has advantages in certain respects over the use of static loading systems for measuring moduli in advanced ceramics. It is nondestructive in nature and can be used for specimens prepared for other tests. Specimens are subjected to minute strains; hence, the moduli are measured at or near the origin of the stress-strain curve with the minimum possibility of fracture. The period of time during which measurement stress is applied and removed is of the order of hundreds of microseconds. With this test method it is feasible to perform measurements at high temperatures, where delayed elastic and creep effects would invalidate modulus measurements calculated from static loading.5.3 The sonic resonant frequency technique can also be used as a nondestructive evaluation tool for detecting and screening defects (cracks, voids, porosity, density variations) in ceramic parts. These defects may change the elastic response and the observed resonant frequency of the test specimen. Guide E2001 describes a procedure for detecting such defects in metallic and nonmetallic parts using the resonant frequency method.5.4 Modification of this test method for use in quality control is possible. A range of acceptable resonant frequencies is determined for a specimen with a particular geometry and mass. Any specimen with a frequency response falling outside this frequency range is rejected. The actual modulus of each specimen need not be determined as long as the limits of the selected frequency range are known to include the resonant frequency that the specimen must possess if its geometry and mass are within specified tolerances.1.1 This test method covers the determination of the dynamic elastic properties of advanced ceramics. Specimens of these materials possess specific mechanical resonant frequencies that are determined by the elastic modulus, mass, and geometry of the test specimen. Therefore, the dynamic elastic properties of a material can be computed if the geometry, mass, and mechanical resonant frequencies of a suitable rectangular or cylindrical test specimen of that material can be measured. The resonant frequencies in flexure and torsion are measured by mechanical excitation of vibrations of the test specimen in a suspended mode (Section 4 and Figs. 1 and 4). Dynamic Young’s modulus is determined using the resonant frequency in the flexural mode of vibration. The dynamic shear modulus, or modulus of rigidity, is found using torsional resonant vibrations. Dynamic Young’s modulus and dynamic shear modulus are used to compute Poisson’s ratio.1.2 This test method is specifically appropriate for advanced ceramics that are elastic, homogeneous, and isotropic (1).2 Advanced ceramics of a composite character (particulate, whisker, or fiber reinforced) may be tested by this test method with the understanding that the character (volume fraction, size, morphology, distribution, orientation, elastic properties, and interfacial bonding) of the reinforcement in the test specimen will have a direct effect on the elastic properties. These reinforcement effects must be considered in interpreting the test results for composites. This test method is not satisfactory for specimens that have cracks or voids that are major discontinuities in the specimen. Neither is the test method satisfactory when these materials cannot be fabricated in a uniform rectangular or circular cross-section.1.3 A high-temperature furnace and cryogenic cabinet are described for measuring the dynamic elastic moduli as a function of temperature from −195 to 1200 °C.1.4 There are material-specific ASTM standards that cover the determination of resonance frequencies and elastic properties of specific materials by sonic resonance or by impulse excitation of vibration. Test Methods C215, C623, C747, C848, C1259, E1875, and E1876 may differ from this test method in several areas (for example: sample size, dimensional tolerances, sample preparation, calculation details, etc.). The testing of those materials should be done in compliance with the appropriate material-specific standards. Where possible, the procedures, sample specifications, and calculations in this standard are consistent with the other test methods.1.5 The values stated in SI units are to be regarded as the standard. The non-SI values given in parentheses are for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 The test method is designed to show whether or not a material meets the specifications as given in Specifications C753 or C776.5.2 The powder’s stoichiometry is useful for predicting the oxide's sintering behavior in the pellet production process.1.1 This test method covers the determination of uranium and the oxygen to uranium atomic ratio in nuclear grade uranium dioxide powder and pellets.1.2 This test method does not include provisions for preventing criticality accidents or requirements for health and safety. Observance of this test method does not relieve the user of the obligation to be aware of and conform to all international, national, or federal, state and local regulations pertaining to possessing, shipping, processing, or using source or special nuclear material.1.3 This test method also is applicable to UO3 and U3O8 powder.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 This specification covers two grades, 36 [250] and 50 [345] of rolled steel structural shapes and plates with low yield to tensile ratio for use in building framing or for general structural purposes.1.2 All shape profiles with a flange width of 6 in. [150 mm] and greater described in Specification A6/A6M, Annex A2, and plates up to and including 5 in. [125 mm] thick are included in this specification.1.3 Supplementary requirements are provided for use where additional testing or additional restrictions are required by the purchaser. Such requirements apply only when specified in the purchase order.1.4 When the steel is to be welded, a welding procedure suitable for the grade of steel and intended use or service is to be utilized. See Appendix X3 of Specification A6/A6M for information on weldability.1.5 The text of this specification contains notes or footnotes, or both, that provide explanatory material; such notes and footnotes, excluding those in tables and figures, do not contain any mandatory requirements.1.6 The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The test method is suitable for the development, specification and quality control testing of fluorescent and non-fluorescent coatings that are intended to be inspected for defects under Specification E2501 illumination.1.1 This test method covers the instrumental measurement of the luminance ratio of a fluorescent coating or sheet sample when illuminated by a narrow band source.1.2 This test method is generally applicable to any coating or sheeting material having combined fluorescent and reflective properties, where the fluorescence is activated by 405 nm light.1.3 This test method is intended as a companion to Specification E2501 to support the development and specification of industrial coatings that are used in a system for detection of coating defects when inspected with the Specification E2501 light source. This test method establishes a quantitative measure of the optical property of a coating that correlates to its ability to enhance defect contrast under the specified inspection light source.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
ASTM E517-19 Standard Test Method for Plastic Strain Ratio r for Sheet Metal Active 发布日期 :  1970-01-01 实施日期 : 

4.1 The plastic strain ratio r is a parameter that indicates the ability of a sheet metal to resist thinning or thickening when subjected to either tensile or compressive forces in the plane of the sheet. It is a measure of plastic anisotropy and is related to the preferred crystallographic orientations within a polycrystalline metal. This resistance to thinning or thickening contributes to the forming of shapes, such as cylindrical flat-bottom cups, by the deep-drawing process. The value of r , therefore, is considered a measure of sheet-metal drawability. It is particularly useful for evaluating materials intended for parts where a substantial portion of the blank is drawn from beneath the blank holder into the die opening. 4.2 For many materials the plastic strain ratio remains essentially constant over a range of plastic strains up to maximum applied force in a tension test. For materials that give different values of r at various strain levels, a superscript is used to designate the percent strain at which the value of r was measured. For example, if a 20 % elongation is used, the report would show r20. 4.3 Materials usually have different values of r when tested in different orientations relative to the rolling direction. The angle of sampling of the individual test specimen is noted by a subscript. Thus, for a test specimen whose length is aligned parallel to the rolling direction, plastic strain ratio, r , is reported as r0. If, in addition, the measurement was made at 20 % elongation and it was deemed necessary to note the percent strain at which the value was measured, the value would be reported as r020. 4.4 A material that has an upper yield strength (yield point) point followed by discontinuous yielding stretches unevenly while this yielding is taking place. In steels, this is associated with the propagation of Lüders' bands on the surface. The accuracy and reproducibility of the determination of plastic strain ratio, r , will be reduced unless the test is continued beyond this yield-point elongation. Similarly, the discontinuous yielding associated with large grain size in a material decreases the accuracy and reproducibility of determinations of plastic strain ratio, r , made at low strains. 1.1 This test method covers special tension testing for the measurement of the plastic strain ratio, r, of sheet metal intended for deep-drawing applications. 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The tendency of a fuel to vaporize in automotive engine fuel systems is indicated by the vapor-liquid ratio of the fuel.5.2 Automotive fuel specifications generally includeT(V/L = 20) limits to ensure products of suitable volatility performance. For high ambient temperatures, a fuel with a high value of T(V/L = 20), indicating a fuel with a low tendency to vaporize, is generally specified; conversely for low ambient temperatures, a fuel with a low value of T(V/L = 20) is specified.1.1 This test method covers the determination of the temperature at which the vapor formed from a selected volume of volatile petroleum product saturated with air at 0 °C to 1 °C (32 °F to 34 °F) produces a pressure of 101.3 kPa (one atmosphere) against vacuum. This test method is applicable to samples for which the determined temperature is between 36 °C and 80 °C (97 °F and 176 °F) and the vapor-liquid ratio is between 8 to 1 and 75 to 1.NOTE 1: When the vapor-liquid ratio is 20:1, the result is intended to be comparable to the results determined by Test Method D2533.NOTE 2: This test method may also be applicable at pressures other than one atmosphere, but the stated precision may not apply.1.2 This test method is applicable to both gasoline and gasoline-oxygenate blends.1.2.1 Some gasoline-oxygenate blends may show a haze when cooled to 0 °C to 1 °C. If a haze is observed in 12.5, it shall be indicated in the reporting of results. The precision and bias statements for hazy samples have not been determined (see Note 12).1.3 The values stated in SI units are to be regarded as standard.1.3.1 Exception—The values given in parentheses are provided for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warnings, see Section 7 and subsection 8.1.1.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Stray radiant power can be a significant source of error in spectrophotometric measurements. SRP usually increases with the passage of time; therefore, testing should be performed periodically. Moreover, the SRPR test is an excellent indicator of the overall condition of a spectrophotometer. A control-chart record of the results of routinely performed SRPR tests can be a useful indicator of need for corrective action or, at least, of the changing reliability of critical measurements.5.2 This test method provides a means of determining the stray radiant power ratio of a spectrophotometer at selected wavelengths in a spectral range, as determined by the SRP filter used, thereby revealing those wavelength regions where significant photometric errors might occur. It does not provide a means of calculating corrections to indicated absorbance (or transmittance) values. The test method must be used with care and understanding, as erroneous results can occur, especially with respect to some modern grating instruments that incorporate moderately narrow bandpass SRP-blocking filters. This test method does not provide a basis for comparing the performance of different spectrophotometers.NOTE 8: Kaye (3) discusses correction methods of measured transmittances (absorbances) that sometimes can be used if sufficient information on the properties and performance of the instrument can be acquired. See also A1.2.5.5.3 This test method describes the performance of a spectrophotometer in terms of the specific test parameters used. When an analytical sample is measured, absorption by the sample of radiation outside of the nominal bandpass at the analytical wavelength can cause a photometric error, underestimating the transmittance or overestimating the absorbance, and correspondingly underestimating the SRPR.5.4 The SRPR indicated by this test method using SRP filters is almost always an underestimation of the true value (see 1.3). A value cited in a manufacturer’s literature represents the performance of a new instrument, tested exactly in accordance with the manufacturer’s specification. The implication is that the manufacturer’s stated SRPR can serve as a benchmark for future performance, provided that the user performs the manufacturer’s specified test. It is recommended that users test new instruments promptly, thereby establishing a comparative benchmark in terms of their own testing facilities. The solution filter ratio method (4.3) is a convenient method for control-charting SRPR. Mielenz, et al., (4) show that its results tend to correlate well with those of the specified wavelength method, but for critical comparison with the manufacturer’s specification, the method used by the manufacturer must be used. Because some instruments reduce SRP by incorporating moderately narrow bandpass SRP-blocking filters that are changed as the wavelength range is scanned, it is possible for SRPR determinations to be highly inaccurate if the cutoff wavelength of the SRP filter falls too close to the absorption edge of an instrument’s SRP-reducing filter (3).1.1 Stray radiant power (SRP) can be a significant source of error in spectrophotometric measurements, and the danger that such error exists is enhanced because its presence often is not suspected (1-4).2 This test method affords an estimate of the relative radiant power, that is, the Stray Radiant Power Ratio (SRPR), at wavelengths remote from those of the nominal bandpass transmitted through the monochromator of an absorption spectrophotometer. Test-filter materials are described that discriminate between the desired wavelengths and those that contribute most to SRP for conventional commercial spectrophotometers used in the ultraviolet, the visible, the near infrared, and the mid-infrared ranges. These procedures apply to instruments of conventional design, with usual sources, detectors, including array detectors, and optical arrangements. The vacuum ultraviolet and the far infrared present special problems that are not discussed herein.NOTE 1: Research (3) has shown that particular care must be exercised in testing grating spectrophotometers that use moderately narrow bandpass SRP-blocking filters. Accurate calibration of the wavelength scale is critical when testing such instruments. Refer to Practice E275.1.2 These procedures are neither all-inclusive nor infallible. Because of the nature of readily available filter materials, with a few exceptions, the procedures are insensitive to SRP of very short wavelengths in the ultraviolet, or of lower frequencies in the infrared. Sharp cutoff longpass filters are available for testing for shorter wavelength SRP in the visible and the near infrared, and sharp cutoff shortpass filters are available for testing at longer visible wavelengths. The procedures are not necessarily valid for “spike” SRP nor for “nearby SRP.” (See Annexes for general discussion and definitions of these terms.) However, they are adequate in most cases and for typical applications. They do cover instruments using prisms or gratings in either single or double monochromators, and with single and double beam instruments.NOTE 2: Instruments with array detectors are inherently prone to having higher levels of SRP. See Annexes for the use of filters to reduce SRP.1.3 The proportion of SRP (that is, SRPR) encountered with a well-designed monochromator, used in a favorable spectral region, typically is 0.1 % transmittance or better, and with a double monochromator it can be less than 1×10-6, even with a broadband continuum source. Under these conditions, it may be difficult to do more than determine that it falls below a certain level. Because SRP test filters always absorb some of the SRP, and may absorb an appreciable amount if the specified measurement wavelength is not very close to the cutoff wavelength of the SRP filter, this test method underestimates the true SRPR. However, actual measurement sometimes requires special techniques and instrument operating conditions that are not typical of those occurring during use. When absorption measurements with continuum sources are being made, it can be that, owing to the effect of slit width on SRP in a double monochromator, these test procedures may offset in some degree the effect of absorption by the SRP filter; that is, because larger slit widths than normal might be used to admit enough energy to the monochromator to permit evaluation of the SRP, the stray proportion indicated could be greater than would normally be encountered in use (but the net effect is still more likely to be an underestimation of the true SRPR). Whether the indicated SRPR equals or differs from the normal-use value depends on how much the SRP is increased with the wider slits and on how much of the SRP is absorbed by the SRP filter. What must be accepted is that the numerical value obtained for the SRPR is a characteristic of the particular test conditions as well as of the performance of the instrument in normal use. It is an indication of whether high absorbance measurements of a sample are more or less likely to be biased by SRP in the neighborhood of the analytical wavelength where the sample test determination is made.1.4 The principal reason for a test procedure that is not exactly representative of normal operation is that the effects of SRP are “magnified” in sample measurements at high absorbance. It might be necessary to increase sensitivity in some way during the test in order to evaluate the SRP adequately. This can be accomplished by increasing slit width and so obtaining sufficient energy to allow meaningful measurement of the SRP after the monochromatic energy has been removed by the SRP filter. However, some instruments automatically increase sensitivity by increasing dynode voltages of the photomultiplier detector. This is particularly true of high-end double monochromator instruments in their ultraviolet and visible ranges. A further reason for increasing energy or sensitivity can be that many instruments have only absorbance scales, which obviously do not extend to zero transmittance. Even a SRP-proportion as large as 1 % may fall outside the measurement range.NOTE 3: Instruments that have built-in optical attenuators to balance sample absorption may make relatively inaccurate measurements below 10 % transmittance, because of poor attenuator linearity. The spectrophotometer manufacturer should be consulted on how to calibrate transmittance of the attenuator at such lower level of transmittance.1.5 High accuracy in SRP measurement is not always required; a measurement reliable within 10 or 20 % may be sufficient. However, regulatory requirements, or the needs of a particular analysis, may require much higher accuracy. Painstaking measurements are always desirable.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
ASTM D4429-09a Standard Test Method for CBR (California Bearing Ratio) of Soils in Place (Withdrawn 2018) Withdrawn, No replacement 发布日期 :  1970-01-01 实施日期 : 

Field in-place CBR tests are used for evaluation and design of flexible pavement components such as base and subbase course and subgrades and for other applications (such as unsurfaced roads) for which CBR is the desired strength parameter. If the field CBR is to be used directly for evaluation or design without consideration for variation due to change in water content, the test should be conducted under one of the following conditions: (a) when the degree of saturation (percentage of voids filled with water) is 80 % or greater, (b) when the material is coarse grained and cohesionless so that it is not significantly affected by changes in water content, or ( c) when the soil has not been modified by construction activities during the two years preceding the test. In the last-named case, the water content does not actually become constant, but generally fluctuates within a rather narrow range. Therefore, the field in-place test data may be used to satisfactorily indicate the average load-carrying capacity. Any construction activities, such as grading or compacting, carried out subsequent to the bearing ratio test will probably invalidate the results of the test. Soils and flexible pavement components at the same location may exhibit significantly different load deflection relationships. No method presently exists to evaluate the precision of a group of non-repetitive plate load tests on soils and flexible pavement components due to the variability of these materials. Note 1—Field in-place tests are used to determine the relative strength of soils, subbase, and some base materials in the condition at which they exist at the time of testing. Such results have direct application in test section work and in some expedient construction, military, or similar operations. Also, as indicated in 4.1, field in-place tests can be used for design under conditions of nominal stability of water, density, and general characteristics of the material tested. However, any significant treating, disturbing, handling, compaction, or water change can affect the soil strength and make the prior to test determination inapplicable, leading to the need for retest and reanalysis. Note 2—Notwithstanding the statements on precision and bias contained in this standard: The precision of this test method is dependent on the competence of the personnel performing it and the suitability of the equipment and facilities used. Agencies which meet the criteria of Practice D3740 are generally considered capable of competent and objective testing. Users of this method are cautioned that compliance with Practice D3740 does not in itself assure reliable testing. Reliable testing depends on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This test method covers the determination of the California Bearing Ratio (CBR) of soil tested in place by the penetration load of the soil. This test method covers the evaluation of the relative quality of subgrade soils, but is applicable to subbase and some base-course materials. This test method is designed to test in-situ materials and corresponds to Test Method D1883. 1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. 1.2.1 In the engineering profession it is customary to use units representing both mass and force interchangeably, unless dynamic calculations are involved. This implicitly combines two separate systems of units, that is, the absolute system and the gravitational system. It is scientifically undesirable to combine the use of two separate sets of inch-pound units within a single standard. This test method has been written using the gravitational system of units when dealing with the inch-pound system. In this system, the pound (lbf) represents a unit of force (weight). However, conversions are given in the SI System. The use of balances or scales recording pounds of mass (lbm), or the recording of density in lbm/ft3 should not be regarded as nonconformance with this test method. 1.3 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026, unless superseded by this standard. 1.3.1 The procedures used to specify how data are collected/recorded or calculated in this standard are regarded as the industry standard. In addition they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any consideration for the user’s objectives; and it is common practice to increase or reduce significant digit of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods or engineering design. 1.4 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Asphaltenes are naturally occurring materials in crude petroleum and petroleum products containing residual material. The asphaltenes are usually present in colloidal suspensions, but they may agglomerate and flocculate if the suspension of asphaltene molecules is disturbed through excess stress or incompatibility. This test method provides compatibility parameters, which can be used to assess stability reserve and compatibility.5.2 A blend is considered stable when the blend’s peptizing power is higher than the blend’s maximum flocculation ratio;3,4 both of them can be calculated using empirical blend rules. Refineries and terminal owners can prevent the flocculation of asphaltenes due to incompatibility by assessing the compatibility of fuels beforehand.NOTE 4: See Appendix X1 for an example of prediction of compatibility.1.1 This test method covers a procedure for quantifying the maximum flocculation ratio of the asphaltenes in the oil and the peptizing power of the oil medium, by an automatic instrument using an optical device.1.2 This test method is applicable to atmospheric or vacuum distillation residues, thermally cracked residue, intermediate and finished residual fuel oils, containing at least 1 % by mass asphaltenes. This test method has not been developed for asphalts.NOTE 1: An optical probe detects the formation of flocculated asphaltenes. The start of flocculation is interpreted when a significant and sustained increase in rate-of-change of signal, as measured by the optical probe, ensures flocculation is in progress. The start of flocculation can be detected unambiguously when the sample contains at least 1 % mass asphaltenes as measured by Test Method D6560.NOTE 2: This test method is applicable to products typical of Specification D396—Grades 5L, 5H, and 6, and Specification D2880—Grades 3-GT and 4-GT.1.3 This test method was evaluated in an interlaboratory study in the nominal range of 32 to 76 for the maximum flocculation ratio and in the nominal range of 36 to 95 for peptizing power.NOTE 3: The nominal range is determined by (min. sample mean—Reproducibility) to (max. sample mean + Reproducibility).1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 By use of standard or reference grade materials for any two of the three components, namely, oxygenated solvent, diluent, or cellulose nitrate, the effect of different batches or different types of the third component can be determined.4.2 This test method is applicable for the determination of the following:4.2.1 The dilution ratio of toluene as the standard diluent to an oxygenated solvent under test, using as the solute standard cellulose nitrate as defined in 5.2.4.2.2 The dilution ratio of a hydrocarbon diluent under test to n-butyl acetate as the standard solvent, using as a solute standard cellulose nitrate as defined in 5.2.4.2.3 The dilution ratio of toluene, as the standard diluent, to n-butyl acetate as the standard solvent, using as the solute cellulose nitrate of varying solubility characteristics.4.3 The information developed through this test may be useful in the formulation of cellulose-based lacquers and adhesives.1.1 This test method covers the determination of the volume ratio of hydrocarbon diluent to active solvent required to cause persistent heterogeneity (precipitation) in a solution of cellulose nitrate.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 The following applies to all specified limits in this standard; for purposes of determining conformance with this standard, an observed value or a calculated value shall be rounded off “to the nearest unit” in the last right-hand digit used in expressing the specification limit, in accordance with the rounding-off method of Practice E29.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 6.1.5 For hazard information and guidance, see the supplier's Material Safety Data Sheet.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
49 条记录,每页 15 条,当前第 2 / 4 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页