微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 Flash point measures the response of the test specimen to heat and ignition source under controlled laboratory conditions. It is only one of a number of properties that must be considered in assessing the overall flammability hazard of a material.5.2 Flash point is used in shipping and safety regulations to define flammable and combustible materials and classify them. Consult the particular regulation involved for precise definitions of these classes.5.3 Flash point can indicate the possible presence of highly volatile and flammable materials in a relatively nonvolatile or nonflammable material.5.4 These test methods use a smaller sample (2 mL to 4 mL) and a shorter test time (1 min to 2 min) than traditional test methods.5.5 Method A, IP 524 and EN ISO 3680 are similar methods for flash no-flash tests. Method B, IP 523 and EN ISO 3679 are similar methods for flash point determination.1.1 These test methods cover procedures for flash point tests, within the range of –30 °C to 300 °C, of petroleum products and biodiesel liquid fuels, using a small scale closed cup tester. The procedures may be used to determine, whether a product will or will not flash at a specified temperature (flash/no flash Method A) or the flash point of a sample (Method B). When used in conjunction with an electronic thermal flash detector, these test methods are also suitable for flash point tests on biodiesels such as fatty acid methyl esters (FAME).1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard should be used to measure and describe the properties of materials, products, or assemblies in response to heat and flame under controlled laboratory conditions and should not be used to describe or appraise the fire hazard or fire risk of materials, products, or assemblies under actual fire conditions. However, results of this test may be used as elements of a fire risk assessment which takes into account all of the factors which are pertinent to an assessment of the fire hazard of a particular end use.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Warning statements appear throughout. See also the Material Safety Data Sheets for the product being tested.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method evaluates the effect of an ECP on seed germination and initial plant growth in a controlled environment.5.2 The results of this test can be used to compare ECPs and other erosion control materials to determine which are the most effective at encouraging the growth of vegetation.1.1 This test method covers guidelines, requirements, and procedures for evaluating the effect of Erosion Control Products (ECPs) on seed germination and vegetation enhancement.1.2 This test method will evaluate the effects of both rolled erosion control products (RECPs) and hydraulically-applied erosion control products (HECPs) on seed germination in a controlled environment.1.3 This test method utilizes bench-scale testing procedures and shall not be interpreted as indicative of field performance.1.4 This test method is not intended to replace full-scale simulation or field testing in acquisition of performance values that are required in the design of erosion control measures utilizing RECPs and HECPs.1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Color is significant chiefly as an indicator of contamination in electrical insulating liquids. Frequently this contamination is the result of solvent action in the apparatus involved or it may indicate possible contamination. No definite relationship can be established between color and the physical and electrical characteristics of the liquid; for that reason color in itself has limited value as a measure of condition. For more precise determination of color, Test Method D1209 may be used.1.1 This standard describes a test method for the visual determination of the color of clear insulating liquids.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3  This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

10.1 Full-scale bending testing is an effective way to determine flexural properties of structural glued laminated timber (glulam) beams. However, testing of large glulam members is cost prohibitive. Mathematical models, when confirmed by full-scale test results, are useful tools to assign flexural properties for glulam. This practice provides guidelines for sampling and testing full-scale glulam beams to determine their flexural properties and to validate mathematical models intended for use in assigning flexural design values.1.1 This practice describes procedures for full scale testing of structural glued laminated timber (glulam) to determine or verify characteristic values used to calculate flexural design properties. Guidelines are given for: (1) testing individual structural glued laminated timber lay-ups (with no modeling), (2) testing individual glulam combinations (with limited modeling), and (3) validating models used to predict characteristic values.1.2 This practice is limited to procedures for establishing flexural properties (Modulus of Rupture, MOR, and Modulus of Elasticity, MOE). Some of the principles for sampling and analysis presented may be applicable to other properties. However, other properties may require additional testing considerations that are beyond the scope of this practice.1.3 This practice is not intended to supersede the provisions of Practice D3737, but provides an alternative method for establishing characteristic values. Lay-up combinations developed in accordance with Practice D3737 are not required to be governed by this standard.NOTE 1: The models described by Practice D3737 have been developed and modified based on more than 50 years of experience and many test programs. In some cases, however, it may be desirable to develop a new model based on other input properties or using lumber materials or grades not covered by that standard.1.4 Details of production, inspection, and certification are beyond the scope of this document. However, for test results to be representative of production, quality control systems shall be in place to ensure consistent quality. Manufacturing shall conform to recognized manufacturing standards such as ANSI A190.1 or CSA O122.1.5 The values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is used to determine the time to sustained flaming and heat release of materials and composites exposed to a prescribed initial test heat flux in the cone calorimeter apparatus.5.2 Quantitative heat release measurements provide information that can be used for upholstery and mattress product designs and product development.5.3 Heat release measurements provide useful information for product development by yielding a quantitative measure of specific changes in fire performance caused by component and composite modifications. Heat release data from this test method will not be predictive of product behavior if the product does not spread flame over its surface under the fire exposure conditions of interest.5.4 Test Limitations—The test data are invalid if either of the following conditions occur: (1) explosive spalling; or (2) the specimen swells sufficiently prior to ignition to touch the spark plug, or the specimen swells up to the plane of the heater base during combustion.1.1 This fire-test-response test method can be used to determine the ignitability and heat release from the composites of contract, institutional, or high-risk occupancy upholstered furniture or mattresses using a bench scale oxygen consumption calorimeter.1.2 This test method provides for measurement of the time to sustained flaming, heat release rate, peak and total heat release, and effective heat of combustion at a constant initial test heat flux of 35 kW/m2. This test method is also suitable to obtain heat release data at different heat fluxes. The specimen is oriented horizontally, and a spark ignition source is used.1.3 The times to sustained flaming, heat release, and effective heat of combustion are determined using the apparatus and procedures described in Test Method E1354.1.4 The tests are performed on bench-scale specimens combining the furniture or mattress outer layer components. Frame elements are not included.1.5 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.6 This standard is used to measure and describe the response of materials, products, or assemblies to heat and flame under controlled conditions, but does not by itself incorporate all factors required for fire hazard or fire risk assessment of the materials, products, or assemblies under actual fire conditions.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Section 6.1.8 Fire testing is inherently hazardous. Adequate safeguards for personnel and property shall be employed in conducting these tests.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 The knowledge of vehicle stopping distance serves as an additional tool in characterizing the pavement surface skid resistance. When used in conjunction with other physical and chemical tests, the skid resistance values derived from this test method may determine the suitability and adequacy of paving materials or finishing techniques. Improvements in pavement maintenance practices and schedules may result from use of this test method.4.2 The stopping distance values measured by this test method with the equipment and procedures stated herein do not necessarily agree or correlate directly with other methods of skid-resistance measurements.5,6 This test method is suitable for research and development purposes, where direct comparison between pavement surfaces are to be made within the same test program.1.1 This test method covers the measurement of stopping distance on paved surfaces with a passenger vehicle equipped with specified full-scale automobile tires.1.2 This test method utilizes a measurement of stopping distances representing the non-steady state skid resistance on four locked wheels as the vehicle decelerates over a wetted pavement surface under specified limits of static wheel load and from a desired speed, while the vehicle remains essentially parallel to its original direction of motion.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method provides for the following measurements and evaluations:5.1.1 Movement capacity of the perimeter fire barrier.5.1.2 Loadbearing capacity of the perimeter joint protection is optional.5.1.3 Ability of the perimeter fire barrier to resist the passage of flames and hot gases.5.1.4 Transmission of heat through the perimeter fire barrier.5.2 This test method does not provide the following:5.2.1 Evaluation of the degree to which the perimeter fire barrier contributes to the fire hazard by generation of smoke, toxic gases, or other products of combustion,5.2.2 Measurement of the degree of control or limitation of the passage of smoke or products of combustion through the perimeter fire barrier,NOTE 1: This test method does not measure the quantity of smoke or hot gases through the floor assembly, the wall assembly, or the perimeter joint protection.5.2.3 Measurement of flame spread over the surface of the perimeter fire barrier,NOTE 2: The information in 5.2.1 through 5.2.3 are determined by other suitable fire test methods. For example, Test Method E84 is used to determine 5.2.3.5.2.4 Durability of the test specimen under actual service conditions, including the effects of cycled temperature,5.2.5 Effects of a load on the movement cycling of the perimeter fire barrier established by this test method,5.2.6 Rotational, vertical, and horizontal shear capabilities of the test specimen,5.2.7 Any other attributes of the test specimen, such as wear resistance, chemical resistance, air infiltration, water-tightness, and so forth, and5.2.8 A measurement of the capability of the test specimen to resist:5.2.8.1 Flame propagation over the exterior faces of the test specimen,5.2.8.2 Spread of flame within the combustible core component of the exterior wall assembly from one story to the next,NOTE 3: Some exterior wall assemblies are made from sandwich panels, which use EPS foam or other similar materials that are combustible.5.2.8.3 Spread of flame over the interior surface (room side) of the test specimen from one story to the next, andNOTE 4: While it is a failure to have fire on the interior surface of the observation room, this test method does not provide a measurement of that flame spread.5.2.8.4 Lateral spread of flame from the compartment of fire origin to adjacent spaces.NOTE 5: The exterior wall assembly, floor assembly, and perimeter joint protection are individual components. The capabilities of individual components are not part of this specific test method's Conditions of Compliance.5.3 In this test method, the test specimens are subjected to one or more specific test conditions. When different test conditions are substituted or the end-use conditions are changed, it is not always possible by, or from, this test method to predict changes to the characteristics measured.5.4 This test method is not intended to be used as the only test method in the selection of a perimeter fire barrier. It is not intended as a specification for all attributes required by a perimeter fire barrier, or any of its individual components, in order for a perimeter fire barrier to be used in a particular application.1.1 This test method measures the performance of the perimeter fire barrier and its ability to maintain a seal to prevent fire spread during the deflection and deformation of the exterior wall assembly and floor assembly during the fire test, while resisting fire exposure from an interior compartment fire as well as from the flame plume emitted from the window burner below. The end point of the fire-resistance test is the period of time elapsing before the first condition of compliance is reached as the perimeter fire barrier is subjected to a time-temperature fire exposure.1.2 The fire exposure conditions used are those specified by this test method for the first 30 min of exposure and then conform to the Test Methods E119 time-temperature curve for the remainder of the test in the test room.1.3 This test method specifies the heating conditions, methods of test, and criteria for evaluation of the ability of a perimeter fire barrier to maintain the fire resistance where a floor and exterior wall assembly are juxtaposed to a perimeter joint.1.4 Test results establish the performance of perimeter fire barriers during the fire-exposure period and shall not be construed as having determined the suitability of perimeter fire barriers for use after that exposure.1.5 This test method does not provide quantitative information about the perimeter fire barrier relative to the rate of leakage of smoke or gases or both. While it requires that such phenomena be noted and reported when describing the general behavior of perimeter fire barrier during the fire-resistance test, such phenomena are not part of the conditions of compliance.1.6 Potentially important factors and fire characteristics not addressed by this test method include, but are not limited to:1.6.1 The performance of the perimeter fire barrier constructed with components other than those tested, and1.6.2 The cyclic movement capabilities of perimeter fire barriers other than the cycling conditions tested.1.7 This test method is used to measure and describe the response of materials, products or assemblies to heat and flame under controlled conditions but does not by itself incorporate all factors required for the fire-hazard or fire-risk assessment of the materials, products, or assemblies under actual fire conditions.1.8 Units—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.9 The text of this test method references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.10 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.11 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

5.1 This test method calibrates or demonstrates conformity of thermogravimetric apparatus at ambient conditions. Most thermogravimetry analysis experiments are carried out under temperature ramp conditions or at isothermal temperatures distant from ambient conditions. This test method does not address the temperature effects on mass calibration.5.2 In most thermogravimetry experiments, the mass change is reported as weight percent in which the observed mass at any time during the course of the experiment is divided by the original mass of the test specimen. This method of reporting results assumes that the mass scale of the apparatus is linear with increasing mass. In such cases, it may be necessary only to confirm the performance of the instrument by comparison to a suitable reference.5.3 When the actual mass of the test specimen is recorded, the use of a calibration factor to correct the calibration of the apparatus may be required, on rare occasions.1.1 This test method describes the calibration or performance confirmation of the mass (or weight) scale of thermogravimetric analyzers and is applicable to commercial and custom-built apparatus.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Latex paints, alkyd paints, and primers are used as coatings for walls, wooden trim, and furnishings in occupied buildings. Paint may be applied to large surface areas and may be applied repeatedly during the lifetime of a building. VOCs are emitted from paint after application to surfaces.5.2 Many other types of architectural coatings may be used in large quantities indoors in buildings. In particular, many different types of coatings are used for floors including wood floor stains and finishes and concrete sealers, hardeners, and stains. Two component finishes are often mixed on site and are applied to floors and other surfaces to create a finished surface.5.3 There is a need for standardized procedures for measuring the emissions of VOCs from paint and coating samples that can be reproduced by different laboratories and that can used for the assessment of the acceptability of VOC emissions from paints and coatings that are intended for use indoors in occupied spaces. This practice describes standardized procedures that can be incorporated into test methods used for the purpose of estimating the impacts of cured paints and coatings on indoor air quality. Different procedures are required for the estimation of VOC exposures to workers applying such products.1.1 This practice describes procedures for testing the emissions of volatile organic compounds (VOCs), formaldehyde, and other carbonyl compounds, from alkyd paint, latex paint, primer, and other architectural coating samples using a small-scale environmental chamber test facility.1.2 This practice describes the requirements for the chamber test facility, the small-scale test chamber, the clean air supply system, the environmental controls, the environmental monitoring and data acquisition system, and the chamber air sampling system.1.3 This practice describes procedures for documenting the paint and coating samples and for the handling and storage of these samples including splitting of samples into smaller containers for storage and subsequent testing.1.4 This practice identifies appropriate substrates to be used for the preparation of test specimens of paints and coatings, as well as procedures for preparing substrates for use.1.5 This practice provides detailed procedures for preparing test specimens of paint and coating samples.1.6 This practice generally describes chamber test procedures and chamber air sampling procedures. The details of these procedures are dependent upon the objectives of the test.1.7 This practice does not recommend specific methods for sampling and analysis of VOCs, formaldehyde, and other carbonyl compounds. The appropriate methods are dependent upon the objectives of the test.1.8 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This procedure is intended to be used to evaluate the ignitability of liquid wastes.5.2 Flash point measures the response of the subsample to heat and an ignition source under controlled laboratory conditions. It is only one of a number of properties that shall be considered in assessing the overall flammability hazard of a liquid waste material.5.3 Flash point can indicate the possible presence of highly volatile and flammable materials in a relatively nonvolatile or nonflammable material.5.4 This test method uses a small sample volume (2 mL) and short test time (1 min).1.1 This test method covers the procedure for a flash point test, within the range of –20 to 70 °C, of liquid wastes using a small-scale closed cup tester.NOTE 1: Some apparatus are not designed for subambient temperature tests, so the testing range would be between 20 °C and 70 °C.NOTE 2: This test method is not applicable for liquid waste that forms a surface film (see Test Method D8175 for Finite Flash Point Determination of Wastes by Pensky-Martens Closed Cup Tester).1.2 Units—The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard.1.3 This standard measures the ignitability properties of liquid wastes (which may be any discarded material), which may include secondary materials, off-specification products, and materials containing free liquids recovered during emergency response actions. Results from this test method may be used as part of a fire risk assessment of the material, but it is the responsibility of the user to perform any additional characterization needed for determination of storage, transport, treatment, or disposal per current regulations.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Warning statements appear throughout. See applicable Safety Data Sheets (SDS) for information about certified reference materials (CRMs) or secondary working standards (SWSs) that may be used in this test method. SDS may also be useful if some components of the waste sample are known.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Flash point measures the response of the test specimen to heat and ignition source under controlled laboratory conditions. It is only one of a number of properties that must be considered in assessing the overall flammability hazard of a material.5.2 Flash point is used in shipping and safety regulations by governmental regulatory agencies to define flammable and combustible materials and to classify them. Consult the particular regulation involved for precise definitions of these classes.5.3 Flash point can indicate the possible presence of highly volatile and flammable impurities or contaminants in a given liquid, such as the presence of residual solvents in solvent-refined drying oils.5.4 These equilibrium flash point test methods use a smaller specimen (2 mL) and a shorter test time (1 min) than traditional non-equilibrium test methods such as Test Method D56 and Test Methods D93.5.5 Test Methods D3828, Test Method D8174, and ISO 3679 are similar test methods and use the same apparatus.1.1 These test methods cover procedures for determining whether a material does or does not flash at a specified temperature (flash/no flash Method A) or for determining the lowest finite temperature at which a material does flash (Method B), when using a small scale closed-cup apparatus. The test methods are applicable to paints, enamels, lacquers, varnishes, solvents, and related products having a flash point between 0 °C and 110 °C (32 °F and 230 °F) and viscosity lower than 15 000 mm2/s (cSt) at 25 °C (77 °F).NOTE 1: Tests at higher or lower temperatures are possible however the precision has not been determined.NOTE 2: More viscous materials can be tested in accordance with Annex A4.NOTE 3: Organic peroxides can be tested in accordance with Annex A5, which describes the applicable safety precautions.NOTE 4: The U.S. Department of Labor (OSHA, Hazard Communications), the U.S. Department of Transportation (RSPA), and the U.S. Environmental Protection Agency (EPA) have specified Test Methods D3278 as one of several acceptable methods for the determination of flash point of liquids in their regulations.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.3 This standard is used to measure and describe the response of materials, products, or assemblies to heat and flame under controlled conditions, but does not by itself incorporate all factors required for fire hazard or fire risk assessment of the materials, products, or assemblies under actual fire conditions.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method is considered satisfactory for use as a referee method for the determination of the wool base content and the clean wool fiber present in a lot of raw wool. If there are differences of practical significance between reported test results for two laboratories (or more), comparative test should be performed to determine if there is a statistical bias between them, using competent statistical assistance. As a minimum, use the samples for such a comparative test that are as homogenous as possible, drawn from the same lot of material as the samples that resulted in the disparate results during the initial testing and randomly assigned in equal numbers to each laboratory. The test results from the laboratories involved should be compared using a statistical test for unpaired data, probability level chosen prior to the testing series. If bias is found, either its cause must be found and corrected, or future results for that material be adjusted in consideration of the known bias.5.2 This test method is also used in studies aimed at deriving suitable formulas for estimating the allowances to be made for wool unavoidably lost or destroyed in such commercial operations as carding, combing, or carbonizing.1.1 This test method covers the determination of the wool base content and the clean wool fiber present in a lot of raw wool by commercial-scale scouring of the lot followed by laboratory tests on samples of the scoured wool.NOTE 1: The sampling of lots of raw wool in packages is covered in Practice D1060, and the determination of the wool content of such samples is covered in Test Method D584. The determination of vegetable matter and other alkali-insoluble impurities in scoured wool is covered in Test Method D1113. For factors for the conversion of wool base content to its equivalent in terms of scoured wool, top, or noil of various commercially specified compositions, refer to Practice D2720.NOTE 2: The values stated in U.S. Customary Units are to be regarded as the standard because of common commercial practice. The S.I. units in parentheses are provided for information only.NOTE 3: Because of trade practice the term “weight” is used in this test method instead of the technically correct term “mass”.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 Procedure A—This procedure is an index-type test which can be used as a guide for acceptance of commercial shipments of geosynthetics. The standard cone and pyramid test fixtures can establish critical height (ch) consistency with similar material from previous lots or different suppliers, as well as testing from other laboratories. However, due to the time required to perform tests, it is generally not recommended for routine acceptance testing.4.2 Procedures B and C—These procedures are performance tests intended as a design aid used to simulate the in-situ behavior of geosynthetics under hydrostatic compression. These test methods may assist a design engineer in comparing the ability of several candidate geosynthetic materials to conform to a site-specific subgrade under specified use and conditions. In procedure B, the pressure is increased until a failure is observed. In procedure C, a given set of conditions (pressure, temperature and test duration) are maintained constant and the performance of the system is observed at the end of the test.1.1 This test method evaluates the stress/time properties of geosynthetics by using hydrostatic pressure to compress the geosynthetic over synthetic or natural test bases consisting of manufactured test pyramids/cones, rocks, soil, or voids.1.2 This test method allows the user to determine the relative failure mode or points of failure for geosynthetics, or both.1.3 This test method offers two distinct procedures:1.3.1 Procedure A incorporates manufactured test pyramids or cones as the base of the testing apparatus. Procedure A is intended to create comparable data between laboratories, and can be used as a guide for routine acceptance tests for various materials.1.3.2 Procedures B and C incorporate site-specific soil or other material selected by the user as the test base of the testing apparatus. Procedures B and C are methods for geosynthetic design for a specific site.1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For a specific warning statement, see Section 6.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Break depends on the fiber structure and on the relation between the grain and other strata of the leather. A fine break, or a grain pattern which shows many fine wrinkles when it is bent to form a concave surface, as it is in the vamp of a shoe, reflects favorably upon appearance and serviceability. A coarse break, on the other hand, where a few coarse wrinkles are formed on bending the grain to form a concave surface may indicate that the grain layer is separating from the corium or main stratum as in pipey leather. Shoes made from fine-break leather are more attractive and tend to wear longer than shoes made from coarse-break leather. (See MIL-STD 663 and the ALCA Journal).41.1 This test method covers the measurement of the break pattern of shoe upper leather using an arbitrary break scale. This test method does not apply to wet blue or wet white.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This index test method indicates a unvegetated RECP’s ability to reduce rainsplash-induced erosion under bench-scale conditions. This test method may also assist in identifying physical attributes of RECPs that contribute to their erosion-control performance.5.2 This test method is bench-scale and therefore, appropriate as an index test for initial indication of product performance, for general comparison of unvegetated RECP capabilities, and for product quality assurance/conformance testing. The results of this test are not indicative of an RECP’s actual field performance.NOTE 2: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspections/etc. Users of this standard are cautioned that compliance with Practice D3740 does not itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This index test method establishes the guidelines, requirements and procedures for evaluating the ability of unvegetated rolled erosion control products (RECPs) to protect soils from simulated rainfall (rain splash) and minimal runoff induced erosion. The critical element of this protection is the ability of the unvegetated RECP to absorb the impact force of raindrops, thereby reducing soil particle loosening through “splash” mechanisms, and limiting the ability of runoff to carry the loosened soil particles.1.2 This index test method utilizes bench-scale testing procedures and is not indicative of unvegetated RECP performance in conditions typically found in the field.NOTE 1: The values obtained with this bench scale procedure are for initial performance indication, general product comparison and conformance purposes only. These values should not be used in estimating RECP soil protection in actual field use with such calculations as the Universal Soil Loss Equation (USLE) or Revised Universal Soil Loss Equation (RUSLE) without verification from qualified, large-scale tests.1.3 This index test is not intended to replace full-scale simulation or field testing in acquisition of performance values that are required in the design of erosion control measures utilizing unvegetated RECPs.1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.5 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026, unless superseded by this standard.1.5.1 The procedures used to specify how data are collected/recorded or calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives, and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this index test method to consider significant digits used in analytical methods for engineering design.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use and may involve use of hazardous materials, equipment, and operations. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Also, the user must comply with prevalent regulatory codes, such as OSHA (Occupational Health and Safety Administration) guidelines, while using the index test method.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
62 条记录,每页 15 条,当前第 2 / 5 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页