微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 The determination of class group composition of hydrocarbon streams and automotive spark-ignition fuels as well as quantification of various individual species such as oxygenates and aromatics is useful for evaluating quality and expected performance.1.1 This test method covers the use of gas chromatography and vacuum ultraviolet absorption spectroscopy (GC-VUV) for the determination of individual compounds and compound classes by percent mass or percent volume with a final boiling point as defined by Test Method D86 up to 225 °C.1.1.1 Typical products encountered in petroleum refining or biofuel operations, such as blend stocks; naphthas, reformates, alkylates, FCC gasoline, liquefied petroleum gas (LPG), alcohols and ethers may be analyzed.1.1.2 Spark-ignition engine fuels including those with commonly blended oxygenates may also be analyzed.1.2 Individual compounds are spectrally verified and speciated. Compounds that are not spectrally verified and speciated are identified by carbon number, based on retention index, and by class type, based on spectral response. The resulting verified hydrocarbon analysis therefore identifies, classifies, and reports 100 % of the spectral responses.1.2.1 This test method may not be applicable to all concentrations of individual hydrocarbons; the user must evaluate the spectral response of the hydrocarbon of interest, the amount and proximity of co-eluting hydrocarbons, and detector saturation. Quantitation of individual hydrocarbons with concentrations less than 0.1 % or greater than 30 % by mass may require validation.1.2.2 This test method can be used to determine methanol in the range of 0.05 % to 3 % by mass, ethanol in the range of 0.05 % to 25 % by mass, butanols in the range of 0.5 % to 10 % by mass, methyl t-butyl ether (MTBE) in the range of 0.5 % to 22 % by mass, ethyl t-butyl ether (ETBE) in the range of 0.5 % to 22 % by mass, and t-amyl methyl ether (TAME) in the range of 0.5 % to 22 % by mass in spark-ignition engine fuels.NOTE 1: Applicable ranges of individual components and precision will ultimately be defined by an interlaboratory study.1.2.3 Other compounds containing oxygen, sulfur, nitrogen, and so forth, may also be present, and may co-elute with the hydrocarbons. If determination of other specific compounds is required, supplementation of the spectral library may be necessary.1.3 Class-type composition – paraffins, iso-paraffins, olefins, naphthenes, aromatics and oxygenates are reported. The class composition totals are the sum of speciated individual compounds and spectrally classed compounds.1.3.1 The class types may optionally be sub classed by carbon number.1.3.2 Olefins may optionally be sub classed into mono-olefins, non-conjugated diolefins, conjugated diolefins, and cyclic olefins.1.3.3 Aromatics may optionally be sub classed into mono-aromatics, diaromatics, and naphtheno-aromatics (indans and indenes).NOTE 2: Interim precision for optional sub class reporting is not determined.1.4 Individual compounds may not be baseline-separated by the procedure described in this method; that is, some compounds will coelute. The coelutions are resolved at the detector using VUV absorbance spectra and deconvolution algorithms.1.5 This test method is intended as a type of detailed hydrocarbon analysis (DHA). Incorporation of the GC-VUV data report into commercial DHA software packages with subsequent physical and chemical property calculations and correlations is the responsibility of the DHA software vendor.1.6 Temporary precision has been determined on a limited subset of samples and compounds given in Table 6 and Table 7.1.7 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 918元 / 折扣价: 781 加购物车

在线阅读 收 藏

5.1 PCS is one of the very few techniques that are able to deal with the measurement of particle size distribution in the nano-size region. This guide highlights this light scattering technique, generally applicable in the particle size range from the sub-nm region until the onset of sedimentation in the sample. The PCS technique is usually applied to slurries or suspensions of solid material in a liquid carrier. It is a first principles method (that is, calibration in the standard understanding of this word, is not involved). The measurement is hydrodynamically based and therefore provides size information in the suspending medium (typically water). Thus the hydrodynamic diameter will almost certainly differ from other size diameters isolated by other techniques and users of the PCS technique need to be aware of the distinction of the various descriptors of particle diameter before making comparisons between techniques. Notwithstanding the preceding sentence, the technique is widely applied in industry and academia as both a research and development tool and as a QC method for the characterization of submicron systems.1.1 This guide deals with the measurement of particle size distribution of suspended particles, which are solely or predominantly sub-100 nm, using the photon correlation (PCS) technique. It does not provide a complete measurement methodology for any specific nanomaterial, but provides a general overview and guide as to the methodology that should be followed for good practice, along with potential pitfalls.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method is useful for the determination of element concentrations in many natural waters and wastewaters. It has the capability for the simultaneous determination of up to 29 elements. High sensitivity analysis and larger dynamic range can be achieved for some elements that are difficult to determine by other techniques such as Flame Atomic Absorption.5.2 The test method is useful for multi-element analysis of domestic and commercial well produced drinking water for metals and nonmetals for use in baseline analysis and monitoring during exploration, hydraulic fracturing, production, closure and reclamation activities related to oil and gas operations (see Guide D8006).5.2.1 Minimum analyses include arsenic, barium, iron, magnesium, sodium, calcium, manganese, and lead.5.2.2 Boron, potassium, chromium, selenium, cadmium, and strontium may be required on a site specific basis.5.2.3 The most abundant elements in oil and gas produced water are sodium, potassium, lithium, magnesium, calcium, strontium, iron, silica, phosphorus, and sulfur.5.3 The test method is useful for multi-element analysis of acid rock drainage and other major and some trace elements in mining influenced water.5.4 Where low quantitation limits are required, Test Method D5673 may be applicable.5.5 The test method is also useful for testing leachates and effluents for ore and mining and metallurgical waste characterization tests including Test Methods D6234, E2242, D5744, and solutions from the Biological Acid Production Potential and Peroxide Acid Generation Methods in the Appendix of Test Methods E1915.1.1 This test method covers the determination of dissolved, total-recoverable, or total elements in drinking water, ground water, surface water, domestic, commercial or industrial wastewaters,2,3 within the following concentration ranges of Table 1.1.2 It is the user’s responsibility to ensure the validity of the test method for waters of untested matrices.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Note 2 and Section 9.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

All of the methods provided involve comparisons between the spectra or chromatograms of the reference and test samples to determine if they show significant differences. It is not possible at this time to establish quantitative limits as a guide to whether a spectral or chromatographic difference is truly significant. Certainly the presence or absence of a moderate or strong peak in the test sample which is not evident in the reference is significant. A persistent difference in the ratios of two peaks of one spectrum as compared to the reference sample is significant. On the whole, some judgment must be exercised in this respect and it is advisable to refer to published data on infrared or gas chromatography in order to establish, where feasible, the possible overall nature of the adulterant or its functional group which might be causing the comparison spectra to differ.Method A is rapid and the most convenient of the procedures given. It should be utilized first in order to detect nonuniformity of the test sample. Significant spectral differences from that of the reference sample can be taken as an indication of adulteration and in such cases the use of the other methods is not necessary. As a general rule. Method A is sufficient to detect gross or major adulteration of the vehicle solids. However, where Method A shows no significant spectral differences, it cannot be assumed that the test sample is completely acceptable since changes in the type of drying oil, polyol, and certain dibasic acids in alkyd resins, addition of certain aliphatic or nonfunctional hydrocarbon resins, and many minor adulterations may not always show characteristic infrared spectral differences. Therefore, in such cases it is best to proceed to additional tests as given in Methods B and C or else alternatively directly to Method D.Method B is useful in detecting adulterations that are unsaponifiable or else have an unsaponifiable component that has escaped detection in Method A only because the adulterant may have been small in amount and therefore its strong spectral peaks may have been masked over by the rest of the vehicle solids. Some care should be taken in interpreting spectral differences in Method B to avoid an erroneous conclusion that the test sample is unacceptable because its spectrum is different. Apparent but unreal differences can occur as a result of incomplete saponification, failure to remove all saponifiable material, and varying degrees of contamination of the unsaponifiable fraction with sterols, etc., present in the vehicle solids. After it has thus been firmly established that a real spectral difference does exist, further tests are unnecessary, except that it is wise to resort again to the published literature on infrared to attempt to identify the possible nature of the adulterant. Where Methods A and B indicate acceptability of the test sample, it is still not always possible to rule out adulteration caused by changes or modifications in the saponifiable portion, that is, the type of fatty acid, dibasic acids, and polyol. In such cases, it is best to continue on to Method C for determination of the oil acids, and to other gas chromatographic methods for the polyol and dibasic acids when such equipment is available.Method C is extremely sensitive in detecting adulterations and changes that have been made in the oil or fatty acid portion of the vehicle solids. It can, for example, detect whether linseed, coconut, oiticica, etc., has been substituted for soya oil and vice versa, or whether fish or tall oil has partially or wholly replaced some other drying oil, etc. Consequently, when the results of Methods A and B suggest that the test sample is acceptable and where a drying oil component is known to be present, Method C should be used additionally for more complete assurance of product uniformity. Where the results from Method C along with those from Methods A and B indicate product uniformity, it is a fairly safe assumption that the product has not been significantly altered.Method D is intended as an alternative to Methods B and C and where the results from Method A indicate apparent product acceptability. Method D, by the use of quantitative ultraviolet spectral absorbance data, is an extremely sensitive procedure for the detection of complete or even partial adulteration of the test sample. However, considerable caution must be exercised in the preliminary pre-drying of the vehicle solids since it is at this stage that the components are extremely sensitive to oxidative changes. Even minor oxidative changes can seriously affect the absorbance data obtained in ultraviolet spectral analysis and may give an impression that the two samples being compared are different when in fact they are the same. When these considerations are provided for, and the comparison spectra are identical in Method D as well as in Method A, then it can be assumed that the sample is acceptable. Significant differences in the spectra from Method D would indicate nonuniformity of the product even though Method A may fail to reveal such nonuniformity.1.1 These practices provide general information on the instrumental techniques available for detecting adulteration or nonuniformity of the chemical nature of the vehicle solids in purchased lots of traffic paints by means of the individual or combined use of infrared and ultraviolet spectroscopy and gas chromatography. The procedures given are applicable when traffic paint is selected and purchased on the basis of pre-qualification laboratory or road performance tests, or both, and a reference sample of the original paint so evaluated and selected is retained and compared with test samples representative of subsequent purchased and delivered lots of such paint and which are required to be the same as the original reference sample.1.2 Although not specifically provided for in these practices, the methods given may also be applied, with appropriate modification, to evaluating the acceptability of traffic paints that have been purchased on the basis of composition specifications. In such cases, application is limited to the vehicle solids as before, as well as the availability of a suitable standard or range of standards representative of the vehicle solids that are acceptable and with which samples of subsequent delivered lots will be compared.1.3 The techniques provided are wholly adequate for detecting gross adulteration of the vehicle solids where completely different drying oils, resins, or polymers, or combinations of these have been substituted for those originally contained in the reference sample. In cases of lesser adulteration or modification, these methods have been found adequate for detecting vehicle solids, adulterations, or modifications as low as 5 weight % of the vehicle solids.1.4 These techniques have been developed on the basis of cooperative work with alkyd, chlorinated rubber-alkyd, and poly(vinyl toluene) type paints involving the detection of nonuniformity when such extraneous materials as rosin, fish oil, hydrocarbon resin, and chlorinated paraffin have been added. The procedures given may be, but are not necessarily completely applicable to all other types of vehicle solids or extraneous additions, or both.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 Mechanical properties of PEEK polymers, such as stiffness or yield strength, are influenced by the level of crystallinity.5 The reported crystallinity index determined by this test method has been correlated with percent crystallinity in PEEK polymers by wide-angle X-ray scattering (WAXS) experiments.2, 34.2 This test method may be useful for both process development, process control, product development, and research.1.1 This test method describes the collection of absorption spectra of polyetheretherketone (PEEK) polymer in filled and unfilled grades, as supplied by a vendor, and the subsequent calculation of the percent crystallinity. The material is evaluated by infrared spectroscopy. The intensity (height) of the absorbance peaks is related to the amount of crystalline regions present in the material.1.2 This test method can be used for PEEK consolidated forms, such as injection molded parts, as long as the samples are optically flat and smooth.1.3 The applicability of the infrared method to industrial and medical grade PEEK materials has been demonstrated by scientific studies.2, 3 Percentage of crystallinity is related to R-FTIR measurement by calibration through wide-angle x-ray scattering (WAXS) crystallinity measurements.2, 3 It is anticipated that this test method, involving the peak heights near 1305 cm-1 and 1280 cm-1, will be evaluated in an Interlaboratory Study (ILS) conducted according to Test Method E691.1.4 This test method does not suggest a desired range of crystallinity for specific applications.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The identification of pigments in a sample of liquid paint or paint film is often important for regulatory purposes. Many inorganic pigments or extenders utilized in past paint formulation are now regulated by federal, state, or municipal health authorities. XRF is one of the more common and convenient methods employed to characterize the pigment composition of a paint formulation.5.2 XRF techniques, in general, do not provide the ability to identify the chemical nature of organic pigments. There are instances where XRF techniques, used in tandem with other analytical methods, such as solid state Carbon 13 Nuclear Magnetic Resonance (C-13 NMR), can identify the organic pigments utilized in coatings. However, XRF provides only an elemental sketch of the inorganic pigmentation. The chemical composition of the pigments is inferred by the analyst from the samples, color, elemental information, and common sense. Small impurities are often found in pigments, so the relative XRF intensities also serve to guide the analyst in proposing the probable pigment present.1.1 This guide covers the general considerations for proper use of X-ray fluorescence (XRF) spectroscopy. Because many differences exist between XRF instruments, no detailed operating instructions are provided. The analyst should follow the instructions provided by the manufacturer for his instrument.1.2 The analyst is encouraged to consult the chemical literature, various trade journals, pigment supplier publications, etc., as well as the instrument manuals from the manufacturer.1.3 XRF is commonly employed to determine the elements present in inorganic pigments and extenders, often in concert with other analysis techniques. Organic pigments cannot normally be identified solely by XRF. On occasion, organic pigments contain heavier elements that can distinguish between major classes of these pigments or may serve to distinguish one of the two distinct pigments. However, the analyst should be wary of a qualitative pigment identification solely by XRF technique.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard information see Section 3 on Radiation Concerns.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The presence and concentration of elements in lime and limestone is important in determining product quality and its suitability for various uses. This test method provides a means of measuring the major and trace element concentration in lime and limestone.1.1 The following test method covers the use of inductively coupled plasma-atomic emission spectroscopy (ICP) and atomic absorption spectroscopy (AA) in the analysis of major and trace elements in limestone and lime (calcined limestone).1.2 Table 1 lists some of the elements that can be analyzed by this test method and the preferred wavelengths. Also see U.S. EPA Methods 200.7 and 200.9.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Methyl hydrogen content is a key characteristic of hydrocarbon lubricating oils and can affect a variety of properties of the oil including its boiling range, viscosity, low temperature flow, and oxidation stability.5.2 The NMR procedure does not require calibration standards of known methyl hydrogen content and is applicable to a wide range of hydrocarbon lubricating oils that are completely soluble in chloroform at ambient temperature.1.1 This test method covers the determination of the total methyl hydrogen content of unadditized base stock (lubricating oils) hydrocarbon oils that are completely soluble in chloroform at ambient temperature using high-resolution nuclear magnetic resonance (NMR) spectrometers.1.2 The reported units are mol percent methyl hydrogen atoms. For pulse Fourier transform (FT) spectrometers, the detection limit is typically 0.1 % mol hydrogen atoms. The interim precision is applicable in the range 20.5 % to 38.7 % mol methyl hydrogen.1.3 This method is applicable to samples containing <0.1 % mol olefinic hydrogens.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in 7.2 and 7.3.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

Benzene is classed as a toxic material. A knowledge of the concentration of this compound may be an aid in evaluating the possible health hazard to persons handling and using the gasoline. This test method is not intended to evaluate such hazards.1.1 This test method covers the determination of the percent benzene in full-range gasoline. It is applicable to concentrations from 0.1 % to 5 volume %.1.2 This test method has not been validated for gasolines containing oxygenates. Certain oxygenates interfere with the measurement described in this test method. Test Method D 6277 is recommended for gasolines containing oxygenates.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see Section 8 and 9.1.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 The present and growing international governmental requirements to add fatty acid methyl esters (FAME) to diesel fuel has had the unintended side-effect of leading to potential FAME contamination of jet turbine fuel in multifuel transport facilities such as cargo tankers and pipelines, and industry wide concerns.5.2 Analytical methods have been developed with the capability of measuring down to <5 mg/kg levels of FAME, however these are complex, and require specialized personnel and laboratory facilities. This Rapid Screening method has been developed for use in the supply chain by non specialized personnel to cover the range of 10 mg/kg to 150 mg/kg.1.1 This test method specifies a rapid screening method using flow analysis by Fourier transform infrared (FA-FTIR) spectroscopy with partial least squares (PLS-1) processing for the determination of the fatty acid methyl ester (FAME) content of aviation turbine fuel (AVTUR), in the range of 10 mg/kg to 150 mg/kg.NOTE 1: Specifications falling within the scope of this test method are: Specification D1655 and Defence Standard 91-91.NOTE 2: This test method detects all FAME components, with peak IR absorbance at approximately 1749 cm-1 and C8 to C22 molecules, as specified in standards such as Specification D6751 and EN 14214. The accuracy of the method is based on the molecular weight of C16 to C18 FAME species; the presence of other FAME species with different molecular weights could affect the accuracy.NOTE 3: Additives such as antistatic agents, antioxidants and corrosion inhibitors are measured with the FAME by the FTIR spectrometer. However the effects of these additives are removed by the flow analysis processing.NOTE 4: FAME concentrations from 150 mg/kg to 500 mg/kg, and below 10 mg/kg can be measured but the precision could be affected.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The determination of class group composition of automotive spark-ignition fuels as well as quantification of various individual species such as oxygenates and aromatics in automotive fuels is useful for evaluating quality and expected performance, as well as compliance with various governmental regulations.1.1 This test method is a standard procedure for the determination in percent mass or percent volume of hydrocarbon group types (paraffins, isoparaffins, olefins, naphthenes, aromatics), methanol, ethanol, benzene, toluene, ethylbenzene, xylenes, naphthalene, and methylnaphthalenes in automotive spark-ignition engine fuels using gas chromatography and vacuum ultraviolet detection (GC-VUV).1.1.1 The concentration ranges for which precision has been determined are as follows:Property Units Applicable RangeParaffins % Volume 3.572 to 23.105Isoparaffins % Volume 22.697 to 71.993Olefins % Volume 0.011 to 44.002Olefins % Mass 0.027 to 41.954Naphthenes % Volume 0.606 to 18.416Aromatics % Volume 14.743 to 58.124Methanol % Volume 0.063 to 3.426Ethanol % Mass 0.042 to 15.991Benzene % Volume 0.09 to 1.091Toluene % Volume 0.698 to 31.377Ethylbenzene % Volume 0.5 to 3.175Xylenes % Volume 3.037 to 18.955Naphthalene % Volume 0.019 to 0.779Methylnaphthalenes % Volume 0.21 to 1.4841.1.2 This test method may be applicable to other concentration ranges, to other properties, or to other hydrocarbon streams, however precision has not been determined.1.2 Individual hydrocarbon components are typically not baseline-separated by the procedure described in this test method, that is, some components will coelute. The coelutions are resolved at the detector using VUV absorbance spectra and deconvolution algorithms.1.3 While this test method reports percent mass and percent volume for several specific components that may be present in automotive spark-ignition engine fuel, it does not attempt to speciate all possible components that may occur in automotive spark-ignition engine fuel. In particular, this test method is not intended as a type of detailed hydrocarbon analysis (DHA).1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. See specific hazard statements in subsection 8.4 and Section 9.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 The chemical composition of the liquid in cementitious pastes is an important indicator of the solid component reactivity at early times, being influenced by the content and rate of reaction of readily soluble alkali components, lime, and other soluble phases. Monitoring the solution composition with time can provide valuable diagnostic information about cement quality and reactivity to supplement other sources of characterization data. This practice is intended to aid in the interpretation of the concentrations of readily soluble components in cement paste solutions, which may include portland cement, limestone, fly ash, ground granulated blast furnace slag, or other components. It provides guidance for measuring the time dependence of the concentrations of one or more components, on an elemental basis, including, but not limited to, aluminum, calcium, potassium, silicon, sodium, and sulfur.1.1 This practice describes a procedure for collection, sample preparation and analysis of aqueous pore solutions obtained from cementitious materials at different hydration times when analyzed by ICP-OES for the six most common readily soluble elements aluminum, calcium, potassium, silicon, sodium and sulfur.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 When electron beam excitation is used in AES, the incident electron beam can interact with the specimen material causing physical and chemical changes. In general, these effects are a hindrance to AES analysis because they cause localized specimen modification (1-4).54.2 With specimens that have poor electrical conductivity the electron beam can stimulate the development of localized charge on the specimen surface. This effect is a hindrance to AES analysis because the potentials associated with the charge can either adversely affect the integrity of Auger data or make Auger data collection difficult (5, 6).1.1 This guide outlines the origins and manifestations of unwanted electron beam effects in Auger electron spectroscopy (AES).1.2 Some general guidelines are provided concerning the electron beam parameters which are most likely to produce these effects and suggestions are offered on how to minimize them.1.3 General classes of materials are identified which are most likely to exhibit unwanted electron beam effects. In addition, a tabulation of some specific materials which have been observed to undergo electron damage effects is provided.1.4 A simple method is outlined for establishing the existence and extent of these effects during routine AES analysis.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Auger electron spectroscopy is often capable of yielding information concerning the chemical and physical environment of atoms in the near-surface region of a solid as well as giving elemental and quantitative information. This information is manifested as changes in the observed Auger electron spectrum for a particular element in the specimen under study compared to the Auger spectrum produced by the same element when it is in some reference form. The differences in the two spectra are said to be due to a chemical effect or a matrix effect. Despite sometimes making elemental identification and quantitative measurements more difficult, these effects in the Auger spectrum are considered valuable tools for characterizing the environment of the near-surface atoms in a solid.1.1 This guide outlines the types of chemical effects and matrix effects which are observed in Auger electron spectroscopy.1.2 Guidelines are given for the reporting of chemical and matrix effects in Auger spectra.1.3 Guidelines are given for utilizing Auger chemical effects for identification or characterization.1.4 This guide is applicable to both electron excited and X-ray excited Auger electron spectroscopy.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Biodiesel is a fuel commodity primarily used as a value-added blending component with diesel fuel.5.2 This test method is applicable for quality control in the production and distribution of diesel fuel and biodiesel blends containing FAME.5.3 The use of triglycerides in fuels is not approved for transportation applications within any ASTM specification. This test method allows the quantification of triglyceride concentration in biodiesel blends, thus enabling detection of out-of-specification blending.5.4 This test method is fast, simple to run, inexpensive and requires no sample preparation.1.1 This test method covers the determination of fatty acid methyl ester (FAME) biodiesel and triglyceride (TAG) concentrations in traditional diesel and renewable diesel fuel blends using a portable mid-infrared spectrometer.1.2 The method applies to samples with biodiesel concentrations from 3 % to 40 % by volume. Additionally, it applies to samples with biodiesel concentrations from 2 % to 27 % by volume which contain triglycerides concentrations from 1 % to 10 % by volume. Triglycerides from 2 % to 10 % by volume can be determined in samples of diesel having biodiesel concentrations from 3 % to 27 % by volume. FAME and triglyceride can be simultaneously determined outside these stated ranges, but the stated precision estimates do not apply.1.3 The method is not able to distinguish TAG and FAME if the TAG concentrations is below 0.142× the measured FAME concentrations.1.4 This procedure is not appropriate for the determination of the concentration of biodiesel in the form of fatty acid ethyl esters (FAEE), see Section 6 for further discussion of possible interferences.1.5 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
112 条记录,每页 15 条,当前第 7 / 8 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页