微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 260元 / 折扣价: 221 加购物车

在线阅读 收 藏

定价: 156元 / 折扣价: 133 加购物车

在线阅读 收 藏

定价: 260元 / 折扣价: 221 加购物车

在线阅读 收 藏

定价: 156元 / 折扣价: 133

在线阅读 收 藏
AS 2043-1977 Coal-tar and synthetic (fast dry) primers for steel pipes 被代替 发布日期 :  1977-11-01 实施日期 : 

定价: 689元 / 折扣价: 586 加购物车

在线阅读 收 藏

定价: 481元 / 折扣价: 409 加购物车

在线阅读 收 藏

This specification covers packaged, dry, cementitious mortar or concrete materials for rapid repairs to hardened hydraulic-cement concrete pavements and structures. Materials that contain organic compounds, such as bitumens, epoxy resins, and polyesters, as the principal binder are not included. Packaged, dry, concrete material contains aggregate of which at least 5% by mass of the total mixture is retained. Packaged, dry, mortar material contains aggregate of which less than 5% by mass of the total mixture is retained. Aqueous solutions, aqueous emulsions or dispersions may be included as components of the packaged materials. Aggregates must be included as a component of the packaged materials. Both packaged dry concrete and mortar shall be mechanically mixed with the use of a mixing liquid. Different test methods shall be performed in order to determine the following properties: compressive strength, length change, scaling resistance, and slant shear bond strength.1.1 This specification covers packaged, dry, cementitious mortar or concrete materials for rapid repairs to hardened hydraulic-cement concrete pavements and structures. Materials that contain organic compounds, such as bitumens, epoxy resins, and polymers, as the principal binder are not included.1.1.1 Packaged, dry, concrete material contains aggregate of which at least 5 % by mass of the total mixture is retained on a 9.5-mm [3/8-in.] sieve.1.1.2 Packaged, dry, mortar material contains aggregate of which less than 5 % by mass of the total mixture is retained on a 9.5-mm [3/8-in.] sieve.1.2 Aqueous solutions, aqueous emulsions or dispersions may be included as components of the packaged materials. The manufacturer may specify that these liquids are to replace some or all of the mixing water.1.3 Aggregates must be included as a component of the packaged materials. The manufacturer may recommend job site addition of specific amounts and types of additional aggregates to his product for some uses. However, such reformulated products are not within the scope of this specification.1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.5 The following safety hazards caveat pertains to the test methods portion of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test is particularly suited to control and development work. Data obtained by this test method shall not be used to predict the behavior of plastic materials at elevated temperatures except in applications in which the factors of time, temperature, method of loading, and fiber stress are similar to those specified in this test method. The data are not intended for use in design or predicting endurance at elevated temperatures.5.2 For many materials, it is possible there will be a specification that requires the use of this test method, but with some procedural modifications that take precedence when adhering to the specification. Therefore, it is advisable to refer to that material specification before using this test method. Refer to Table 1 in Classification D4000, which lists the ASTM material standards that currently exist.1.1 This test method covers the determination of the temperature at which an arbitrary deformation occurs when specimens are subjected to an arbitrary set of testing conditions.1.2 This test method applies to molded and sheet materials available in thicknesses of 3 mm (1/8 in.) or greater and which are rigid or semirigid at normal temperature.NOTE 1: Sheet stock less than 3 mm (0.125 in.) but more than 1 mm (0.040 in.) in thickness may be tested by use of a composite sample having a minimum thickness of 3 mm. The laminae must be of uniform stress distribution. One type of composite specimen has been prepared by cementing the ends of the laminae together and then smoothing the edges with sandpaper. The direction of loading shall be perpendicular to the edges of the individual laminae.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.1.4 This standard and ASTM D648 address the same subject matter and are essentially the same test. However, due to known differences in results caused by the differences in heat transfer media, the results from this standard and ASTM D648 must not be compared or considered equivalent.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 2: The text of this standard references notes and footnotes that provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.NOTE 3: This standard and ISO 75-1 and ISO 75-2 address the same subject matter, but differ in technical content, and results shall not be compared between the two test methods.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This guide applies to temperature sources with controlled temperature solid blocks. They are known under various names such as dry-well calibrators, dry-block calibrators, and temperature block calibrators. They are typically comprised of solid block materials such as metal or ceramic, a temperature-regulating device, a control sensor, and some built-in indicator of temperature in a portable package. Dry-block calibrators are commonly used for calibration of industrial thermometers. These calibrators are commonly used in either two modes: (1) the direct mode in which the calibrator is used as the calibrated reference, or (2) comparison mode in which the calibrator is an isothermal temperature source for comparing thermometers under test to a separate calibrated reference thermometer. The uncertainty of these calibrations is dependent on which of these two modes is used and a variety of thermal properties of the specific dry-block designs.5.2 A thermally uniform, stable, and accurate temperature zone for calibration may be achieved with given measurement uncertainty. Various thermal properties of dry-block calibrator blocks have been identified that shall be characterized and/or quantified to determine uncertainty of measurements and care taken during the calibration process to optimize results appropriately. Temperature stability has been long recognized as a variable to be characterized. Others include axial temperature uniformity, radial temperature uniformity, stem conduction, block loading, hysteresis, and controller accuracy. External factors that influence results include ambient temperature, drafts, and power fluctuations. Recognizing and testing these properties will greatly improve calibration results.1.1 The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This guide is intended for use with dry-block temperature calibrators without the use of fluids or thermal contact-enhancing media over a range of -100 °C to 1700 °C.1.4 In this guide, the essential features of dry-block calibrators used for the purpose of thermometer calibration in either the direct or comparison mode are described. The direct mode is defined as using the dry-block calibrator as a standalone instrument with the control sensor and the calibrator display serving as the reference while the comparison mode uses an external sensor and ancillary measurement system as the reference.1.5 Measurement practices to optimize the accuracy of a dry-block calibrator to obtain optimum results are proposed in this guide.1.6 Tests that can be performed to define uncertainty limits and how they may be used in creating uncertainty budgets are proposed in this guide.1.7 Dry-block calibrator accessories such as built-in reference thermometers, switch testing circuitry, computer communications, or current loops will not be discussed.1.8 It is advised that liquid-in-glass thermometers not be used in dry-block calibrators, as using liquid-in-glass thermometers with a metal block may cause damage to the readout of the thermometer.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

3.1 The fineness of the frit has a direct bearing on many of its properties, such as fusibility, tearing, gloss, opacity, suspension in the slip, and ease of spraying.1.1 These test methods cover the determination of the fineness of frit in wet- or dry-milled porcelain enamels and other ceramic coatings for metals by means of the No. 200 (75-μm) or No. 325 (45-μm) sieve.1.2 The two methods appear as follows:  Sections    Method A—Referee Method   Method B—Routine Method  4 to 9 10 to 141.3 Method A is intended for use where a referee method of higher accuracy is required, while Method B is intended to meet the needs of normal enamel plant production control operations where a rapid, simplified method of sieve testing is required. The accuracy of the simplified method has proved to be entirely adequate for this use. The simplified test, however, is not recommended where high accuracy is required.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 This practice describes three operational steps necessary to ensure accurate coating thickness measurement: calibration, verification and adjustment of coating thickness measuring gages, as well as proper methods for obtaining coating thickness measurements on both ferrous and non-ferrous metal substrates.4.2 Many specifications for commercial and industrial coatings projects stipulate a minimum and a maximum dry film thickness for each layer in a coating system. Additionally, most manufacturers of high performance coatings will warranty coating systems based upon, in part, achieving the proper thickness of each layer and the total coating system. Even if a project specification is not provided, the coating manufacturer’s recommendations published on product data sheets can become the governing document(s). Equipment manufacturers produce nondestructive coating thickness testing gages that are used to measure the cumulative or individual thickness of the coating layers, after they are dry. The manufacturers provide information for the adjustment and use of these gages, normally in the form of operating instructions. The user of this equipment must be knowledgeable in the proper operation of these devices, including methods for verifying the accuracy of the equipment prior to, during and after use as well as measurement procedures.1.1 This practice describes the use of magnetic and eddy current gages for dry film thickness measurement. This practice is intended to supplement the manufacturers’ instructions for the manual operation of the gages and is not intended to replace them. It includes definitions of key terms, reference documents, the significance and use of the practice, the advantages and limitations of coating thickness gages, and a description of test specimens. It describes the methods and recommended frequency for verifying the accuracy of gages and for adjusting the equipment and lists the reporting recommendations.1.2 These procedures are not applicable to coatings that will be readily deformed under the load of the measuring gages/probes, as the gage probe must be placed directly on the coating surface to obtain a reading. Provisions for measuring on soft or tacky coatings are described in 5.7.1.3 Coating thickness can be measured using a variety of gages. These gages are categorized as “magnetic pull-off” and “electronic.” They use a sensing probe or magnet to measure the gap (distance) between the base metal and the probe. This measured distance is displayed as coating thickness by the gages.1.4 Coating thickness can vary widely across a surface. As a result, obtaining single-point measurements may not accurately represent the actual coating system thickness. SSPC-PA 2 prescribes a frequency of coating thickness measurement based on the size of the area coated. A frequency of measurement for coated steel beams (girders) and coated test panels is also provided in the appendices to SSPC-PA 2. The governing specification is responsible for providing the user with the minimum and the maximum coating thickness for each layer, and for the total coating system.1.5 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 It is normal for some of the combustion products of an internal combustion engine to penetrate into the engine lubricant and be retained in it.5.2 When an engine is run for a period of time and then stored over a long period of time, the by-products of combustion might be retained in the oil in a liquefied state.5.3 Under these circumstances, precipitates can form that impair the filterability of the oil the next time the engine is run.5.4 This test method subjects the test oil and the new oil to the same treatments such that the loss of filterability can be determined.5.5 Reference oils, on which the data obtained by this test method is known, are available.5.6 This test method requires that a reference oil also be tested and results reported. Two oils are available, one known to give a low and one known to give a high data value for this test method.NOTE 1: When the new oil test results are to be offered as candidate oil test results for a specification, such as Specification D4485, the specification will state maximum allowable loss of filterability (flow reduction) of the test oil as compared to the new oil.1.1 This test method covers the determination of the tendency of an oil to form a precipitate that can plug an oil filter. It simulates a problem that may be encountered in a new engine run for a short period of time, followed by a long period of storage with some water in the oil.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
110 条记录,每页 15 条,当前第 3 / 8 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页