微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 This practice is intended for the collection of settled dust samples in and around buildings and related structures for the subsequent determination of lead content in a manner consistent with that described in the HUD Guidelines and 40 CFR 745.63. The practice is meant for use in the collection of settled dust samples that are of interest in clearance, hazard assessment, risk assessment, and other purposes.5.2 Use of different pressures applied to the sampled surface along with the use of different wiping patterns contribute to collection variability. Thus, the sampling result can vary between operators performing collection from identical surfaces as a result of collection variables. Collection for any group of sampling locations at a given sampling site is best when limited to a single operator.5.3 This practice is recommended for the collection of settled dust samples from hard, relatively smooth, nonporous surfaces. This practice is less effective for collecting settled dust samples from surfaces with substantial texture such as rough concrete, brickwork, textured ceilings, and soft fibrous surfaces such as upholstery and carpeting.1.1 This practice covers the collection of settled lead-containing dust on surfaces using the wipe sampling method. These samples are collected in a manner that will permit subsequent extraction (see Practices E1644 and E1979) and determination of lead using laboratory analysis techniques such as atomic spectrometry (see Test Methods E3193/E3193M and E3203) or electroanalysis (see Practice E2051). For collection of settled dust samples for determination of lead and other metals, use Practice D6966.1.2 This practice does not address the sampling design criteria (that is, sampling plan which includes the number and location of samples) that are used for clearance (see Practices E2271/E2271M and E3074/E3074M), lead hazard evaluation, or risk assessment (see Guide E2115), and other purposes. To provide for valid conclusions, sufficient numbers of samples should be obtained as directed by a sampling plan.1.3 This practice contains notes that are explanatory and are not part of the mandatory requirements of this practice.1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM D520-00(2019) Standard Specification for Zinc Dust Pigment Active 发布日期 :  1970-01-01 实施日期 : 

This specification covers three types of zinc dust, for use as a pigment in paints. The pigments shall consist substantially of metallic zinc and shall conform to the requirements for composition prescribed. The total and metallic zinc shall be shall be tested to meet the requirements prescribed. Lead, cadmium, and iron shall be tested to meet the requirements prescribed. Oily or fatty matter, or both shall, and the coarse particle shall be tested to meet the requirements prescribed.1.1 This specification covers three types of zinc dust, for use as a pigment in paints.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method provides a procedure for performing laboratory tests to determine the minimum ignition energy of a dust cloud.NOTE 1: For gases and vapors, see Test Method E582.5.2 The data developed by this test method may be used to assess the spark ignitibility of a dust cloud. Additional guidance on the significance of minimum ignition energy is in X1.1.5.3 The values obtained are specific to the sample tested, the method used and the test equipment used. The values are not to be considered intrinsic material constants.5.4 The MIE of a dust as determined using this procedure can be compared with the MIE's of reference dusts (using the same procedure) to obtain the relative sensitivity of the dust to spark ignition. An understanding of the relative sensitivity to spark ignition can be used to minimize the probability of explosions due to spark ignition.1.1 This test method determines the minimum ignition energy of a dust cloud in air by a high voltage spark.1.2 The minimum ignition energy (MIE) of a dust-cloud is primarily used to assess the likelihood of ignition during processing and handling. The likelihood of ignition is used to evaluate the need for precautions such as explosion prevention systems. The MIE is determined as the electrical energy stored in a capacitor which, when released as a high voltage spark, is just sufficient to ignite the dust cloud at its most easily ignitable concentration in air. The laboratory test method described in this standard does not optimize all test variables that affect MIE. Smaller MIE values might be determined by increasing the number of repetitions or optimizing the spark discharge circuit for each dust tested.1.3 In this test method, the test equipment is calibrated using a series of reference dusts whose MIE values lie within established limits. Once the test equipment is calibrated, the relative ignition sensitivity of other dusts can be found by comparing their MIE values with those of the reference dusts or with dusts whose ignition sensitivities are known from experience. X1.1 of this test method includes guidance on the significance of minimum ignition energy with respect to electrostatic discharges.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 8.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is applicable to dusts and powders, and provides a procedure for performing laboratory tests to evaluate hot-surface ignition temperatures of dust layers.5.2 The test data can be of value in determining safe operating conditions in industrial plants, mines, manufacturing processes, and locations of material usage and storage.5.3 Due to variation of ignition temperature with layer thickness, the test data at one thickness may not be applicable to all industrial situations (see Appendix X1). Tests at various layer thicknesses may provide a means for extrapolation to thicker layers, as listed in the following for pulverized Pittsburgh bituminous coal dust (2). Mathematical modeling of layer ignition at various layer thicknesses is described in Ref. (3).Layer Thickness, mm Hot-Surface Ignition Temperature, °C6.4 3009.4 26012.7 24025.4 2105.4 This hot plate test method allows for loss of heat from the top surface of the dust layer, and therefore generally gives a higher ignition temperature for a material than Test Method E771, which is a more adiabatic system.5.5 This test method for dust layers generally will give a lower ignition temperature than Test Method E1491, which is for dust clouds. The layer ignition temperature is determined while monitoring for periods of minutes to hours, while the dust cloud is only exposed to the furnace for a period of seconds.NOTE 1: Much of the literature data for layer ignition is actually from a basket in a heated furnace (4), known as the modified Godbert-Greenwald furnace test. Other data are from nonstandardized hot plates (5-9).5.6 Additional information on the significance and use of this test method may be found in Ref. (10).1.1 This test method covers a laboratory procedure to determine the hot-surface ignition temperature of dust layers, that is, measuring the minimum temperature at which a dust layer will self-heat. The test consists of a dust layer heated on a hot plate.2,31.2 Data obtained from this test method provide a relative measure of the hot-surface ignition temperature of a dust layer.1.3 This test method should be used to measure and describe the properties of materials in response to heat and flame under controlled laboratory conditions and should not be used to describe or appraise the fire hazard or fire hazard risk of materials, products, or assemblies under actual fire conditions. However, results of this test method may be used as elements of a fire risk assessment that takes into account all of the factors that are pertinent to an assessment of the fire hazard risk of a particular end use product.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 8.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This microvacuum sampling and indirect analysis method is used for the general testing of non-airborne dust samples for asbestos. It is used to assist in the evaluation of dust that may be found on surfaces in buildings such as ceiling tiles, shelving, electrical components, duct work, carpet, etc. This test method provides an index of the surface loading of asbestos structures in the dust per unit area analyzed as derived from a quantitative TEM analysis.5.1.1 This test method does not describe procedures or techniques required to evaluate the safety or habitability of buildings with asbestos-containing materials, or compliance with federal, state, or local regulations or statutes. It is the user’s responsibility to make these determinations.5.1.2 At present, no relationship has been established between asbestos-containing dust as measured by this test method and potential human exposure to airborne asbestos. Accordingly, the users should consider other available information in their interpretation of the data obtained from this test method.5.2 This definition of dust accepts all particles small enough to pass through a 1-mm (No. 18) screen. Thus, a single, large asbestos containing particle(s) (from the large end of the particle size distribution) dispersed during sample preparation may result in anomalously large asbestos surface loading results in the TEM analyses of that sample. It is, therefore, recommended that multiple independent samples are secured from the same area, and that a minimum of three samples be analyzed by the entire procedure.1.1 This test method covers a procedure to (a) identify asbestos in dust and (b) provide an estimate of the surface loading of asbestos in the sampled dust reported as the number of asbestos structures per unit area of sampled surface.1.1.1 If an estimate of the asbestos mass is to be determined, the user is referred to Test Method D5756.1.2 This test method describes the equipment and procedures necessary for sampling, by a microvacuum technique, non-airborne dust for levels of asbestos structures. The non-airborne sample is collected inside a standard filter membrane cassette from the sampling of a surface area for dust which may contain asbestos.1.2.1 This procedure uses a microvacuuming sampling technique. The collection efficiency of this technique is unknown and will vary among substrates. Properties influencing collection efficiency include surface texture, adhesiveness, electrostatic properties and other factors.1.3 Asbestos identified by transmission electron microscopy (TEM) is based on morphology, selected area electron diffraction (SAED), and energy dispersive X-ray analysis (EDXA). Some information about structure size is also determined.1.4 This test method is generally applicable for an estimate of the surface loading of asbestos structures starting from approximately 1000 asbestos structures per square centimetre.1.4.1 The procedure outlined in this test method employs an indirect sample preparation technique. It is intended to disperse aggregated asbestos into fundamental fibrils, fiber bundles, clusters, or matrices that can be more accurately quantified by transmission electron microscopy. However, as with all indirect sample preparation techniques, the asbestos observed for quantification may not represent the physical form of the asbestos as sampled. More specifically, the procedure described neither creates nor destroys asbestos, but it may alter the physical form of the mineral fibers.1.5 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This microvacuum sampling and indirect analysis method is used for the general testing of non-airborne dust samples for asbestos. It is used to assist in the evaluation of dust that may be found on surfaces in buildings, such as ceiling tiles, shelving, electrical components, duct work, carpet, etc. This test method provides an estimate of the mass surface loading of asbestos in the dust reported as either the mass of asbestos per unit area or as the mass of asbestos per mass of sampled dust as derived from a quantitative TEM analysis.This test method does not describe procedures or techniques required to evaluate the safety or habitability of buildings with asbestos-containing materials, or compliance with federal, state, or local regulations or statutes. It is the user's responsibility to make these determinations.At present, no relationship has been established between asbestos-containing dust as measured by this test method and potential human exposure to airborne asbestos. Accordingly, the users should consider other available information in their interpretation of the data obtained from this test method.This definition of dust accepts all particles small enough to pass through a 1 mm screen. Thus, a single, large asbestos-containing particle(s) (from the large end of the particle size distribution) disassembled during sample preparation may result in anomalously large asbestos surface loading results in the TEM analyses of that sample. Conversely, failure to disaggregate large particles may result in anomalously low asbestos mass surface loadings. It is, therefore, recommended that multiple independent samples be secured from the same area, and that a minimum of three samples be analyzed by the entire procedure.1.1 This test method covers a procedure to (a) identify asbestos in dust and (b) provide an estimate of the surface loading of asbestos in the sampled dust, reported as either the mass of asbestos per unit area of sampled surface or as the mass of asbestos per mass of sampled dust.1.1.1 If an estimate of asbestos structure counts is to be determined, the user is referred to Test Method D 5755.1.2 This test method describes the equipment and procedures necessary for sampling, by a microvacuum technique, non-airborne dust for levels of asbestos. The non-airborne sample is collected inside a standard filter membrane cassette from the sampling of a surface area for dust which may contain asbestos.1.2.1 This procedure uses a microvacuuming sampling technique. The collection efficiency of this technique is unknown. Variability of collection efficiency for any particular substrate and across different types of substrates is also unknown. The effects of sampling efficiency differences and variability on the interpretation of dust sampling measurements have not been determined.1.3 Asbestos identified by transmission electron microscopy (TEM) is based on morphology, selected area electron diffraction (SAED), and energy dispersive X-ray analysis (EDXA). Some information about structure size is also determined.1.4 This test method is generally applicable for an estimate of the surface loading of asbestos starting from approximately 0.24 pg of asbestos per square centimetre (assuming a minimum fiber dimension of 0.5 μm by 0.025 μm, see 17.8), but will vary with the analytical parameters noted in 17.8.1.4.1 The procedure outlined in this test method employs an indirect sample preparation technique. It is intended to disaggregate and disperse asbestos into fibrils and fiber bundles that can be more accurately identified, counted, and sized by transmission electron microscopy. However, as with all indirect sample preparation techniques, the asbestos observed for quantitation may not represent the physical form of the asbestos as sampled. More specifically, the procedure described neither creates not destroys asbestos, but it may alter the physical form of the mineral fibers.1.5 The values stated in SI units are to be regarded as the standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

6.1 Method—It is possible that electrical insulation in service will fail as a result of tracking, erosion, or a combination of both, if exposed to high relative humidity and contamination environments. This is particularly true of organic insulations in outdoor applications where the surface of the insulation becomes contaminated by deposits of moisture and dirt, for example, coal dust or salt spray. This test method is an accelerated test that simulates extremely severe outdoor contamination. It is believed that the most severe conditions likely to be encountered in outdoor service in the United States will be relatively mild compared to the conditions specified in this test method.6.2 Test Results—Materials can be classified by this test method as tracking-resistant, tracking-affected, or tracking-susceptible. The exact test values for these categories as they apply to specific uses will be specified in the appropriate material specifications, but guideline figures are suggested in Note 4. Tracking-resistant materials, unless erosion failure occurs first, have the potential to last many hundreds of hours (Note 5). Erosion, though it is possible that it will progress laterally, generally results in a failure perpendicular to the specimen surface. Therefore, compare only specimens of the same nominal thickness for resistance to tracking-induced erosion. Estimate the extent of erosion from measurements of the depth of penetration of the erosion. Place materials that are not tracking-susceptible in three broad categories—erosion-resistant, erosion-affected, and erosion-susceptible. When the standard thickness specimen is tested, the following times to failure typify the categories (Note 6):Erosion-susceptible 5 h to 50 hErosion-affected 50 h to 200 hErosion-resistant over 200 hNOTE 4: Tracking-susceptible materials usually fail within 5 h. Tracking-affected materials usually fail before about 100 h.NOTE 5: This information is derived from the individual experiences of eight laboratories using this test method since its publication as a suggested test method in June 1957, and from the results of an organized test program among these laboratories.NOTE 6: In a normal distribution approximately 68 % of all test values are included within ±1 standard deviation of the mean.6.3 Interpretation of Test Results—This test method provides information that allows classification as described in 6.2. The comparison of materials within the same group is likely to be ambiguous unless three or more replicate specimens are tested. When the test method is used for specification purposes, do not establish simple minimum values without consideration of the large variance to be expected in test results. It is recommended that quality levels and specification minima be determined by statistical techniques.1.1 This test method is intended to differentiate solid electrical insulating materials with respect to their resistance to the action of electric arcs produced by conduction through surface films of a specified contaminant containing moisture. Test Methods D2302, D2303, D3638, and D5288 are also useful to evaluate materials.1.2 Units—The values stated in SI units are the standard. The inch-pound units in parentheses are for information only. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: There is no equivalent ISO standard.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1. Scope 1.1 This Standard covers the following devices intended for connection to copper conductors only and for installation and use in hazardous locations: Class I, Groups A, B, C, and D; Class II, Group G, in coal or coke dust, and in gaseous mine

定价: 592元 / 折扣价: 504

在线阅读 收 藏

1.1 This specification covers requirements for premoistened wipe materials that are used to collect settled dusts on surfaces for the subsequent determination of beryllium.1.2 For wipe materials used for the determination of lead in surface dust, refer to Specification E1792. This is mentioned to insure that users of wipes recognize that there is some relationship between wipes and the analyte of interest.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This specification contains notes that are explanatory and are not part of the mandatory requirements of the specification.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method covers the determination of respirable dust concentration in workplace atmospheres.5.2 Variations of the test method are in world-wide use for determining compliance relative to occupational exposure levels.5.3 The test method may be used to verify dust control measures.5.4 The test method may also be applied in research into health effects of dust in an occupational setting.1.1 This test method provides details for the determination of respirable dust concentration defined in terms of international convention in a range from 0.5 mg/m3 to 10 mg/m3 in workplace atmospheres, depending on sampling time. Specifics are given for sampling and analysis using any one of a number of commercially available cyclone samplers.1.2 The limitations on the test method are a minimum weight of 0.1 mg of dust on the filter, and a maximum loading dependent on sampler type and time of sampling. The test method may be used at higher loadings if the flow rate can be maintained constant.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This test method contains notes that are explanatory and are not part of the mandatory requirements of the method.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Beryllium is an important analyte in industrial hygiene because of the risk of exposed workers developing Chronic Beryllium Disease (CBD). CBD is a granulomatous lung disease that is caused by the body’s immune system response to inhaled dust or fumes containing beryllium, a human carcinogen (2). Surface wipe samples and air filter samples are collected to monitor the workplace. This practice addresses the problem of spurious results caused by the presence of interfering elements in the solution analyzed. The practice has been evaluated for all elements having emission spectra near the 313.042 and 313.107 nm beryllium lines, as well as elements of general concern including aluminum, calcium, iron and lead. Below is a table listing each possible spectrally interfering element:Cerium Chromium Hafnium MolybdenumNiobium Thorium Titanium ThuliumUranium Vanadium Uranium   Measurement of beryllium on the order of 1 ppb (0.003 µg Be/100 cm2 wipe sample) has been successfully accomplished in the presence of spectrally interfering elements on the order of hundreds of ppm. This method has been validated on matrices containing 10 mg of each of the above elements. In some cases including interferents such as chromium and calcium, the single 2 mL beryllium extraction chromatography resin can handle >100 mg of total dissolved solids and still deliver >90 % beryllium yield. Should the matrix contain greater amounts of contaminants, additional resin may be used or, more likely, a combination of different resins may be used. (3,4).1.1 This practice covers the separation of beryllium from other metals and metalloids in acid solutions, by extraction chromatography, for subsequent determination of beryllium by atomic spectroscopy techniques such as inductively coupled plasma atomic emission spectroscopy (ICP-AES).1.2 This practice is applicable to samples of settled dust that have been collected in accordance with Practices D6966 or D7296.1.3 This practice is compatible with a wide variety of acid digestion techniques used in digesting settled dust samples, such as those described in Test Method D7035.1.4 This practice is appropriate for the preparation of settled dust samples where an unacceptable bias is suspected or known because of spectral interferences caused by other metals or metalloids present in the sample. This practice may also be appropriate for the analysis of other types of samples.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 This practice provides the basic criteria to be used by accreditation bodies and others in evaluating the qualifications of laboratories engaged in the testing of lead in paint, or settled dust, or airborne particulates, or soil, or combination thereof, taken from and around buildings and related structures. The criteria in this practice shall be supplemented by additional specific criteria and requirements, when appropriate; for example, when necessary to be in accordance with federal, state, or local government regulations.4.2 The accreditation is for organizations and not individuals.4.3 The practice is intended to provide objective information on the capabilities needed by laboratories to determine lead in paint, dust, airborne particulates, and soil taken from and around buildings and related structures. It is not intended to be used to compare one laboratory with another.4.4 This practice is also intended for use by laboratories in the development and implementation of their management systems and for use to request or perform an evaluation of in-house facilities in accordance with this practice.1.1 This practice covers the qualifications, including minimum requirements for personnel and equipment, duties, responsibilities, and services of laboratories engaged in the determination of lead in paint, or settled dust, or airborne particulates, or soil, or any combination thereof, taken from and around buildings and related structures.1.2 This practice has been developed consistent with Guides E548 and E994, to supplement ISO/IEC 17025.1.3 This practice contains notes that are explanatory and are not part of the mandatory requirements of the practice.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Human exposure to toxic metals and metalloids present in surface dust can result from dermal contact with or ingestion of contaminated dust. Also, inhalation exposure can result from disturbing dust particles from contaminated surfaces. Thus, standardized methods for the collection and analysis of metals and metalloids in surface dust samples are needed in order to evaluate the potential for human exposure to toxic elements.5.2 This practice involves the use of sampling equipment to collect surface dust samples that may contain toxic metals and metalloids, and is intended for use by qualified technical professionals.5.3 This practice allows for the subsequent determination of collected elemental concentrations on an area (loading) or mass concentration basis, or both.5.4 Because particle losses can occur due to collection of dust onto the inner surfaces of the nozzle, the length of the collection nozzle is specified in order that such losses are comparable from one sample to another.5.5 This practice is suitable for the collection of surface dust samples from, for example: (a) soft, porous surfaces such as carpet or upholstery; (b) hard, rough surfaces such as concrete or roughened wood; (c) confined areas that cannot be easily sampled by other means (such as wipe sampling as described in Practice D6966). A companion sampling technique that may be used for collection of surface dust from hard, smooth surfaces is wipe sampling (Practice D6966). A companion vacuum sampling technique that may be used for sampling carpets is described in Practice D5438.5.6 Procedures presented in this practice are intended to provide a standardized method for dust collection from surfaces that cannot be reliably sampled using wipe collection methods (for example, Practice D6966). Additionally, the procedure described uses equipment that is readily available and in common use for other environmental and occupational hygiene sampling applications.5.7 The entire contents of the filter holder, that is, the filter plus collected dust, is targeted for subsequent analysis for metals and metalloids content. An internal capsule is used if gravimetric analysis is necessary.1.1 This practice covers the micro-vacuum collection of surface dust for subsequent determination of metals and metalloids. The primary intended application is for sampling from soft, rough, or porous surfaces.1.2 Micro-vacuum sampling is carried out using a collection nozzle attached to a filter holder (sampling cassette) that is connected to an air sampling pump.1.3 This practice allows for the subsequent determination of metals and metalloids on a loading basis (mass of element(s) per unit area sampled), or on a concentration basis (mass of element(s) per unit mass of sample collected), or both.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 Limitations—Due to a number of physical factors inherent in the micro-vacuum sampling method, analytical results for vacuum dust samples are not likely to reflect the total dust contained within the sampling area prior to sample collection. Indeed, dust collection will generally be biased towards smaller, less dense dust particles. Nevertheless, the use of this standard practice will generate data that are consistent and comparable between operators performing micro-vacuum collection at a variety of sampling locations and sites.21.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 702元 / 折扣价: 597 加购物车

在线阅读 收 藏

5.1 This practice is intended for the digestion of lead in dust wipe samples collected during various lead hazard activities performed in and around buildings and related structures.5.2 This practice is also intended for the digestion of lead in dust wipe samples collected during and after building renovations.5.3 This practice is applicable to the digestion of dust wipe samples that have or have not been collected in accordance with Practice E1728/E1728M using wipes that may or may not conform to Specification E1792.5.4 This practice is applicable to the digestion of dust wipe samples that were placed in either hard-walled, rigid containers such as 50-mL centrifuge tubes or flexible plastic bags.NOTE 2: Due to the difficulty in performing quantitative transfers of some samples from plastic bags, hard-walled rigid containers such as 50-mL plastic centrifuge tubes are recommended in Practice E1728/E1728M for sample collection.5.5 Digestates prepared according to this practice are intended to be analyzed for lead concentration using spectrometric techniques such as Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) and Flame Atomic Absorption Spectrometry (FAAS) (see Test Methods E1613, E3193, and E3203), or using electrochemical techniques such as anodic stripping voltammetry (see Practice E2051).5.6 This practice is not capable of determining lead bound within matrices, such as silica, that are not soluble in nitric acid.5.7 This practice is capable of determining lead bound within paint.1.1 This practice covers the acid digestion of surface dust samples (collected using wipe sampling practices) and associated quality control (QC) samples for the determination of lead.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.2.1 Exception—Informational inch-pound units are provided in Note 3.1.3 This practice contains notes which are explanatory and not part of mandatory requirements of the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 All materials on exterior aircraft surfaces are subject to abrasion from airborne particles of various sizes and shapes. Transparent materials are particularly vulnerable to abrasion, since their performance is based on their ability to transmit light with a minimal amount of scatter. Scratches, pitting, and coating removal and delamination as a result of abrasion may increase scatter, reduce transmission, and degrade the performance of transparent materials. Visually transparent materials are required for pilot and air crew enclosures, such as canopies, windshields, and viewpoints. Materials transparent in the IR region (8 to 12 μm) are required for tracking, targeting, and navigational instrumentation.5.2 This test method is intended to provide a calibrated and repeatable means of determining the relative abrasion resistance of materials and coatings for optical and IR transparent materials and coatings. The test parameters for this test method can be directly related to dust cloud densities and velocities to which transparent materials are exposed in the field.1.1 This test method covers the resistance of transparent plastics and coatings used in aerospace windscreens, canopies, and viewports to surface erosion as a result of dust impingement. This test method simulates flight through a defined particle cloud environment by means of independent control of particle size, velocity, impact angle, mass loading, and test duration.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
35 条记录,每页 15 条,当前第 2 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页