微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

This specification covers one grade of virgin zirconium metal commonly designated as sponge because of its porous, sponge-like texture, but it may also take other forms such as chunklets. The one grade described is designated as Reactor Grade R60001, suitable for use in nuclear applications. The main characteristic of the reactor grade is its low nuclear cross section as achieved by removal of hafnium. Zirconium metal is usually prepared by reduction of zirconium tetrachloride, and gets its physical characteristics from the processes involved in production. These characteristics may be expected to vary greatly with manufacturing methods. Only virgin zirconium metal, in identified, uniform, well-mixed blends, shall be used. The zirconium metal shall conform to the requirements for chemical composition specified.1.1 This specification covers one grade of virgin zirconium metal commonly designated as sponge because of its porous, sponge-like texture, but it may also take other forms such as chunklets, suitable for use in nuclear applications.1.2 Unless a single unit is used, for example corrosion mass gain in mg/dm2, the values stated in either inch-pound or SI units are to be regarded separately as standard. The values stated in each system are not exact equivalents; therefore each system must be used independently of the other. SI values cannot be mixed with inch-pound values.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 The degree of deacetylation of chitosan salts is an important characterization parameter since the charge density of the chitosan molecule is responsible for potential biological and functional effects.4.2 The degree of deacetylation (% DDA) of water-soluble chitosan salts can be determined by 1H nuclear magnetic resonance spectroscopy (1H NMR). Several workers have reported on the NMR determination of chemical composition and sequential arrangement of monomer units in chitin and chitosan. The test method described is primarily based on the work of Vårum et al. (1991),5 which represents the first publication on routine determination of chemical composition in chitosans by solution state 1H NMR spectroscopy. This test method is applicable for determining the % DDA of chitosan chloride and chitosan glutamate salts. It is a simple, rapid, and suitable method for routine use. Quantitative 1H NMR spectroscopy reports directly on the relative concentration of chemically distinct protons in the sample, consequently, no assumptions, calibration curves or calculations other than determination of relative signal intensity ratios are necessary.4.3 In order to obtain well-resolved NMR spectra, depolymerization of chitosans to a number average degree of polymerization (DPn) of ~15 to 30 is required. This reduces the viscosity and increases the mobility of the molecules. Although there are several options for depolymerization of chitosans, the most convenient procedure is that of nitrous acid degradation in deuterated water. The reaction is selective, stoichiometric with respect to GlcN, rapid, and easily controlled (Allan & Peyron, 1995).6 The reaction selectively cleaves after a GlcN-residue, transforming it into 2,5-anhydro-D-mannose (chitose), consequently, depletion of GlcN after depolymerization is expected. On the other hand, the chitose unit displays characteristic 1H NMR signals the intensity of which may be estimated and utilized in the calculation of % DDA, eliminating the need for correction factors. Using the intensity of the chitose signals, the number average degree of polymerization can easily be calculated as a control of the depolymerization.4.4 Samples are equilibrated and analyzed at a temperature of 90 ± 1°C. Elevated sample temperature contributes to reducing sample viscosity and repositions the proton signal of residual water to an area outside that of interest. While samples are not stored at 90°C but only analyzed at this elevated temperature, the NMR tubes should be sealed with a stopper to avoid any evaporation. At a sample pH* of 3.8-4.3 (see 6.1.5 below), artifactual deacetylation of the sample does not occur during the short equilibration and analysis time.4.5 A general description of NMR can be found in <761> of the USP 35-NF30.1.1 This test method covers the determination of the degree of deacetylation in chitosan and chitosan salts intended for use in biomedical and pharmaceutical applications as well as in Tissue Engineered Medical Products (TEMPs) by high-resolution proton NMR (1H NMR). A guide for the characterization of chitosan salts has been published as Guide F2103.1.2 The test method is applicable for determining the degree of deacetylation (% DDA) of chitosan chloride and chitosan glutamate salts and is valid for % DDA values from 50 up to and including 99. It is simple, rapid, and suitable for routine use. Knowledge of the degree of deacetylation is important for an understanding of the functionality of chitosan salts in TEMP formulations and applications. This test method will assist end users in choosing the correct chitosan for their particular application. Chitosan salts may have utility in drug delivery applications, as scaffold or matrix material, and in cell and tissue encapsulation applications.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

10.1 For purposes of determining compliance with the specified limits for requirements of the properties listed in Table 1 and Table 2, an observed value or a calculated value shall be rounded as indicated in accordance with the rounding method of Practice E29.AbstractThis specification covers vacuum-melted zirconium and zirconium alloy ingots for nuclear application. Materials covered shall be produced by multiple vacuum arc melting, or electron beam melting, or other melting processes conventionally used for reactive metals. Unless otherwise specified, ingots shall be conditioned by machining or grinding or both to remove surface and subsurface defects detrimental to subsequent fabrication. The ingot shall conform to the chemical composition requirements prescribed. The ingots shall be analyzed for the alloying and impurity elements prescribed. Ingots shall be inspected ultrasonically using the prescribed methods. The test shall be conducted in accordance with practice E 114.1.1 This specification covers vacuum-melted zirconium and zirconium alloy ingots for nuclear application.1.2 The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the specification.1.3 The following precautionary caveat pertains only to the test method portions of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers UNS R60001, R60802, R60804, and R60901 wrought zirconium and zirconium alloy bars, rods, and wires. All material grades covered should conform to the required chemical composition requirements. Elements that are intentionally added to the melt should be identified, analyzed and reported in the chemical analysis. The zirconium and zirconium alloys should be made from ingots produced by vacuum or plasma arc melting, vacuum electron-beam melting, a combination of the three methods, or other melting processes conventionally used for reactive metals. All processes should be performed in furnaces specifically for reactive metals. Mill products included in this specification should be formed with conventional extrusion, forging, or rolling equipment that is used in primary ferrous and nonferrous plants. The cold worked and annealed materials should be in fully annealed condition unless otherwise specified. Hot worked shapes should be furnished in not descaled, mechanically descaled, or mechanically descaled and pickled finish, while cold-worked shapes should be furnished in cold-worked, ground, or pickled finish.1.1 This specification covers four grades of wrought zirconium and zirconium alloy bars, rod, and wire as follows:1.1.1 R60001—Unalloyed grade,1.1.2 R60802—Zirconium-Tin alloy (Zircaloy 2),1.1.3 R60804—Zirconium-Tin alloy (Zircaloy 4), and1.1.4 R60901—Zirconium-Niobium alloy.1.2 Unless a single unit is used, for example corrosion mass gain in mg/dm2, the values stated in either inch-pound or SI units are to be regarded separately as standard. The values stated in each system are not exact equivalents; therefore each system must be used independently of the other. SI values cannot be mixed with inch-pound values.1.3 The following precautionary caveat pertains only to the test method portions of this specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is useful as a repeatable, nondestructive technique to monitor in-place density and moisture of soil and rock along lengthy sections of horizontal, slanted, and vertical access holes or tubes. With proper calibration in accordance with Annex A1, this test method can be used to quantify changes in density and moisture content of soil and rock.5.2 This test method is used in vadose zone monitoring, for performance assessment of engineered barriers at waste facilities, and for research related to monitoring the movement of liquids (water solutions and hydrocarbons) through soil and rock. The nondestructive nature of the test allows repetitive measurements at a site and statistical analysis of results.5.3 The fundamental assumptions inherent in the density measurement portion of this test method are that Compton scattering and photoelectric absorption are the dominant interactions of the gamma rays with the material under test.5.4 The probe response, in counts, can be converted to wet density by comparing the detected rate of gamma radiation with previously established calibration data (see Annex A1).5.5 The probe count response may also be utilized directly for unitless, relative comparison with other probe readings.5.5.1 For materials of densities higher than that of about the density of water, higher count rates within the same soil type relate to lower densities and, conversely, lower count rates within the same soil type relate to higher densities.5.5.2 For materials of densities lower than the density of water, higher count rates within the same soil type relate to higher densities and, conversely, lower count rates within the same soil type relate to lower densities.5.5.3 Because of the functional inflection of probe response for densities near the density of water, exercise great care when drawing conclusions from probe response in this density range.5.6 The fundamental assumption inherent in the moisture measurement portion of this test is that the hydrogen contained in the water molecules within the soil and rock is the dominant neutron thermalizing media, so increased water content of the soil and rock results in higher count rates of the moisture content system of the instrument.1.1 This test method covers collection and comparison of logs of thermalized-neutron counts and back-scattered gamma counts along horizontal or vertical air-filled access tubes.1.2 For limitations, see Section 6, “Interferences.”1.3 The in situ water content in mass per unit volume and the density in mass per unit volume of soil and rock at positions or in intervals along the length of an access tube are calculated by comparing the thermal neutron count rate and gamma count rates respectively to previously established calibration data.1.4 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined. Within the text of this standard, SI units appear first followed by the inch-pound (or other non-SI) units in brackets1.4.1 Reporting the test results in units other than SI shall not be regarded as nonconformance with the standard.1.5 All observed and calculated values shall conform to the guide for significant digits and rounding established in Practice D6026.1.5.1 The procedures used to specify how data are collected, recorded, and calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that should generally be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazards, see Section 8.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers hot- and cold-rolled zirconium and zirconium alloy sheet, strip, and plate.1.1 This specification covers hot- and cold-rolled zirconium and zirconium alloy sheet, strip, and plate.1.2 One unalloyed and three alloys for use in nuclear applications are described.1.3 The products covered in this specification include the following forms and sizes:1.3.1 Sheet, 24 in. [600 mm] or more in width; under 0.187 in. [4.8 mm] in thickness,1.3.2 Strip, less than 24 in. [600 mm] in width; under 0.187 in. [4.8 mm] in thickness, and1.3.3 Plate, over 10 in. [250 mm] in width; 0.187 in. [4.8 mm] and over in thickness.NOTE 1: Material over 0.187 in. [4.8 mm] in thickness and less than 10 in. [250 mm] wide is covered as bar in Specification B351/B351M.1.4 Unless a single unit is used, for example corrosion mass gain in mg/dm2, the values stated in either inch-pound or SI units are to be regarded separately as standard. The values stated in each system are not exact equivalents; therefore each system must be used independently of the other. SI values cannot be mixed with inch-pound values.1.5 The following precautionary caveat pertains only to the test method portions of this specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This PDF includes GI 2. 1. Scope 1.1 This Standard applies to pressure-retaining components and their supports of CANDU nuclear power plants that have a Code Classification of Class 1C, 2C, or 3C as defined by CSA Standard N285.0. 1.2 This Stand

定价: 910元 / 折扣价: 774

在线阅读 收 藏

16.1 For the purpose of determining compliance with the specified limits of property requirements, an observed value or a calculated value shall be rounded in accordance with the rounding method of Practice E29.Test Rounded Units for Observedor Calculated Value Chemical composition, tolerance (when expressed in decimals) nearest unit in the last right hand place   of figures of the specified limitTensile strength and yield strength nearest 1000 psi (10 MPa)Elongation nearest 1 %AbstractThis specification covers the standard requirements for wrought zirconium and zirconium alloy seamless and welded tubes for nuclear applications except for nuclear fuel cladding. Five grades of reactor grade zirconium and zirconium alloys with R60001, R60802, R60804, R60901, and R60904 UNS number designations are described. Material shall be made from ingots produced by vacuum arc melting, electron beam melting, or other melting process to be carried out in furnaces conventionally used for reactive metals. Seamless tubes may be made by billet extrusion with subsequent cold working, by drawing, swaging, or rocking, with intermediate annealing. Welded tubing shall be made from flat-rolled products by an automatic or semiautomatic welding process with no addition of filler metal and shall be cold reduced by drawing, swaging, or rocking. The products shall be in the recrystallized or cold-worked and stress-relieved conditions and shall be furnished by as-cold reducing, pickling, grounding, polishing, or end-saw cutting, machining, or shearing. Chemical and product analysis shall be performed on the materials which shall meet the chemical composition requirements for tin, iron, chromium, nickel, niobium, oxygen, and other impurity elements. The tensile properties shall be determined by a tensile test method and shall conform to the tensile strength, yield strength, and elongation limits. Steam and water corrosion tests and hydrostatic test shall be conducted to determine the acceptance criteria for corrosion and internal hydrostatic pressure, respectively. Burst properties, contractile strain ratio, grain size, and hydride orientation of the finished tubing shall also be determined.1.1 This specification covers seamless and welded wrought zirconium and zirconium-alloy tubes for nuclear application. Nuclear fuel cladding is covered in Specification B811.1.2 Five grades of reactor grade zirconium and zirconium alloys suitable for nuclear application are described.1.2.1 The present UNS numbers designated for the five grades are given in Table 1.1.3 Unless a single unit is used, for example corrosion mass gain in mg/dm2, the values stated in either inch-pound or SI units are to be regarded separately as standard. The values stated in each system are not exact equivalents; therefore each system must be used independently of the other. SI values cannot be mixed with inch-pound values.1.4 The following precautionary caveat pertains only to the test method portions of this specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 The test method described is useful as a rapid, nondestructive technique for in-place measurements of bulk density of soil and soil-aggregate. Test results may be used for the determination of dry density if the water content of the soil or soil-aggregate is determined by separate means, such as those methods described in Test Methods D2216, D4643, D4944, and D4959.4.2 The test method is used for quality control and acceptance testing of compacted soil and soil-aggregate mixtures as used in construction and also for research and development. The nondestructive nature allows repetitive measurements at a single test location and statistical analysis of the results.4.3 Density—The fundamental assumptions inherent in the method is that Compton scattering is the dominant interaction and that the material is homogeneous.NOTE 3: The quality of the result produced by this standard test method is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection, and the like. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This test method describes the procedures for measuring in-place bulk density of soil and soil-aggregate using nuclear equipment with radioactive sources (hereafter referred to simply as “gauges”). These gauges are distinct from those described in Test Method D6938 insofar as:1.1.1 These gauges do not contain a system (nuclear or otherwise) for the determination of the water content of the material under measurement.1.1.2 These gauges have photon yields sufficiently low as to require the inclusion of background radiation effects on the response during normal operation.1.1.2.1 For the devices described in Test Method D6938, the contribution of gamma rays detected from the naturally-occurring radioisotopes in most soils (hereafter referred to as “background”) compared to the contribution of gamma rays used by the device to measure in-place bulk density is typically small enough to be negligible in terms of their effect on measurement accuracy. However, for these low-activity gauges, the gamma ray yield from the gauge is low enough that the background contribution from most soils compared to the contribution of gamma rays from the gauge is no longer negligible, and changes in this background can adversely affect the accuracy of the bulk density reading.1.1.2.2 In order to compensate for potentially differing background contribution to low-activity gauge measurements at different test sites, a background reading must be taken in conjunction with gauge measurements obtained at a given test site. This background reading is utilized in the bulk density calculation performed by the gauge with the goal of minimizing these background effects on the density measurement accuracy.1.2 For limitations see Section 5 on Interferences.1.3 The bulk density of soil and soil-aggregate is measured by the attenuation of gamma radiation where the source is placed at a known depth up to 300 mm [12 in.] and the detector(s) remains on the surface (some gauges may reverse this orientation).1.3.1 The bulk density of the test sample in mass per unit volume is calculated by comparing the detected rate of gamma radiation with previously established calibration data.1.3.2 Neither the dry density nor the water content of the test sample is measured by this device. However, the results of this test can be used with the water content or water mass per unit volume value determined by alternative methods to determine the dry density of the test sample.1.4 The gauge is calibrated to read the bulk density of soil or soil-aggregate.1.5 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.5.1 For purposes of comparing, a measured or calculated value(s) with specified limits, the measured or calculated value(s) shall be rounded to the nearest decimal or significant digits in the specified limits.1.5.2 The procedures used to specify how data are collected/recorded and calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that should generally be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design.1.6 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. Reporting test results in units other than SI shall not be regarded as nonconformance with this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: Nuclear density gauge manuals and reference materials, as well as the gauge displays themselves, typically refer to bulk density as “wet density” or “WD.”NOTE 2: The term “bulk density” is used throughout this standard. This term has different definitions in Terminology D653, depending on the context of its use. For this standard, however, “bulk density” refers to, as defined in Terminology D653, “the total mass of partially saturated or saturated soil or rock per unit total volume.”1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1. Scope 1.1 This Standard specifies the requirements and establishes the rules for design, fabrication, and installation of pressure- retaining containment system components. In this Standard the term "components" includes nonregistered items. 1.2

定价: 774元 / 折扣价: 658

在线阅读 收 藏

1. Scope 1.1 This Standard specifies the requirements for periodic inspection of containment system components in CANDU nuclear power plants. 1.2 This Standard provides the inspection requirements for assurance of the structural integrity of metal

定价: 774元 / 折扣价: 658

在线阅读 收 藏

定价: 819元 / 折扣价: 697

在线阅读 收 藏

1. Scope 1.1 General This Standard applies to airborne and liquid effluents associated with the normal operation of CANDU Nuclear Power Plants. It provides guidelines and a methodology for calculating the upper limits (the Derived Release Limits)

定价: 819元 / 折扣价: 697

在线阅读 收 藏

1. Scope 1.1 General 1.1.1 This Standard provides guidelines and a methodology for calculating effective doses and thyroid doses to people (either individually or collectively) in the path of airborne radioactive material released from a nuclear f

定价: 819元 / 折扣价: 697

在线阅读 收 藏

4.1 Personnel trained for coating and lining work inspection are required to perform examination/inspection tasks to verify conformance of coating and lining work to written requirements.4.2 This guide provides guidance for development of an indoctrination and training program for training of personnel performing coating and lining work inspection.4.3 Certification/qualification of personnel performing coating and lining work inspection is addressed in Guide D4537.1.1 This guide is intended to assist those responsible for developing a program for the indoctrination and training of personnel performing coating and lining inspection work for nuclear facilities.1.2 It is recognized that organizations and job responsibilities vary widely among utilities and also among various support and service companies. It is the responsibility of the user of this guide to identify the appropriate subject matter for its program and its specific needs.1.3 Users of this guide must ensure that coating and lining work complies not only with this guide, but also with the licensee's plant-specific quality assurance program and licensing commitments.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
185 条记录,每页 15 条,当前第 2 / 13 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页