微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 This practice is used to evaluate the conformance of a production process to specifications when (1) special causes of variation may be present, and (2) the process may not be in a state of statistical control. This evaluation may also be used to compare different manufacturing operations for conformance to specifications.1.1 This practice provides a calculation procedure and a format for reporting the process performance of a manufacturing operation for a rubber or rubber product.1.2 This practice is specifically designed to be used for technically significant properties of the final product.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 PCRT Applications and Capabilities—PCRT has been applied successfully to a wide range of outlier screening applications in the manufacture and maintenance of metallic and non-metallic parts. Examples of anomalies detected are discussed in 1.1. PCRT has been shown to provide cost effective and accurate outlier screening solutions in many industries including automotive, aerospace, and power generation. Examples of successful applications currently employed in commercial use include, but are not limited to:(1) Silicon nitride bearing elements,(2) Steel, iron, and aluminum rocker and control arms,(3) Aircraft and industrial gas turbine engine components (blades, vanes, disks),(4) Cast cylinder heads and cylinder blocks,(5) Sintered powder metal gears and clutch plates,(6) Machined forged steel steering and transmission components (gears, shafts, racks),(7) Ceramic oxygen sensors,(8) Silicon wafers,(9) Gears, including those with induction hardened or carburized teeth,(10) Ceramic matrix composite (CMC) material samples and components,(11) Components with shot peened surfaces,(12) Machined or rolled-formed steel fasteners, or both,(13) Components made with additive manufacturing,(14) Aircraft landing gear, wheel and brake components, and(15) Components made with metal injection molding.5.2 General Approach and Equipment Requirements for PCRT via Swept Sine Input: 5.2.1 PCRT systems are comprised of hardware and software capable of inducing swept sine vibrations, recording the component response to the induced vibrations, and executing analysis of the data collected. Inputting a swept sine wave into the part has proven to be an effective means of introducing mechanical vibration and can be achieved with a high quality signal generator coupled with an appropriate active transducer in physical contact with the part. Collection of the part’s frequency response can be achieved by recording the signal generated by an appropriate passive vibration transducer. The software required to analyze the available data may include a variety of suitable statistical analysis and pattern recognition tools. Measurement accuracy and repeatability are extremely important to the application of PCRT.5.2.2 Hardware Requirements—A swept sine wave signal generator and response measurement system operating over the desired frequency range of the test part are required with accuracy better than 0.002 %. The signal generator should be calibrated to applicable industry standards. Transducers must be operable over same frequency range. Three transducers are typically used; one “drive” transducer and two “receive” transducers. Transducers typically operate in a dry environment, providing direct contact coupling to the part under examination. However, noncontacting response methods can operate suitably when parts are wet or oil-coated. Other than fixturing and transducer contact, no other contact with the part is allowed as these mechanical forces dampen certain vibrations. For optimal examination, parts should be placed precisely on the transducers (generally, ±0.062 in. (1.6 mm) in each axis provides acceptable results). The examination nest and cabling shall isolate the drive from receive signals and ground returns, so as to not produce (mechanical or electrical) cross talk between channels. Excessive external vibration or audible noise, or both, will compromise the measurements.5.3 Constraints and Limitations: 5.3.1 PCRT cannot separate parts based on visually detectable anomalies that do not affect the structural integrity of the part. It may be necessary to provide additional visual inspection of parts to identify these indications.5.3.2 Excessive process variation of parts may limit the sensitivity of PCRT outlier screening.5.3.3 Specific anomaly identification is highly unlikely. PCRT is a whole body measurement, so differentiating between a crack and a void in the same location is generally not possible. It may be possible to differentiate some anomalies by using multiple patterns and teaching sets. The use of physics-based modeling and simulation to predict the resonance frequency spectrum of a component may also allow relationships between resonance frequencies and defect locations/characteristics to be established.5.3.4 PCRT will only work with stiff objects that provide resonances whose peak quality factor (Q) values are greater than 500. Non-rigid materials or very thin-walled parts may not yield satisfactory Q values.5.3.5 While PCRT can be applied to painted and coated parts in many cases, the presence of some surface coatings such as vibration absorbing materials and heavy oil layers may limit or preclude the application of PCRT.5.3.6 While PCRT can be applied to parts over a wide range of temperatures, it should not be applied to parts that are rapidly changing temperature. The part temperature should be stabilized before collecting resonance data.5.3.7 Misclassified parts in the teaching set, along with the presence of unknown anomalies in the teaching set, can significantly reduce the accuracy and sensitivity of PCRT.1.1 This practice describes a general procedure for using the process compensated resonance testing (PCRT) via swept sine input method to perform outlier screening on populations of newly manufactured and in-service parts. PCRT excites the resonance frequencies of metallic and non-metallic test components using a swept sine wave input over a set frequency range. PCRT detects and analyzes component resonance frequency patterns and uses the differences in resonance patterns between acceptable and unacceptable components to perform non-destructive testing. PCRT frequency analysis compares the resonance pattern of a component to the patterns of known reference populations of the same component and renders a pass or fail result based on the similarity of the tested component to those populations. For non-destructive testing applications with known defects or material states of interest, or both, Practice E2534 covers the development and application of PCRT sorting modules that compare test components to known acceptable and unacceptable component populations. However, some applications do not have physical examples of components with known defects or material states. Other applications experience isolated component failures with unknown causes or causes that propagate from defects that are beyond the sensitivity of the current required inspections, or both. In these cases, PCRT is applied in an outlier screening mode that develops a sorting module using only a population of presumed acceptable production components, and then compares test components for similarity to that presumed acceptable population. The resonance differences can be used to distinguish acceptable components with normal process variation from outlier components that may have material states or defects, or both, that will cause performance deficiencies. These material states and defects include, but are not limited to, cracks, voids, porosity, shrink, inclusions, discontinuities, grain and crystalline structure differences, density-related anomalies, heat treatment variations, material elastic property differences, residual stress, and dimensional variations. This practice is intended for use with instruments capable of exciting, measuring, recording, and analyzing multiple, whole body, mechanical vibration resonance frequencies in acoustic or ultrasonic frequency ranges, or both.1.2 Units—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This test method can be used to ensure absolute reproducibility of WSix film deposition systems over the course of many months. The time span of measurements is essentially the life of many process deposition systems.This test method can be used to qualify new WSix deposition systems to ensure duplicability of existing systems. This test method is essential for the coordination of global semiconductor fabrication operations using different analytical services. This test method allows samples from various deposition systems to be analyzed at different sites and times.This test method is the chosen calibration technique for a variety of analytical techniques, including, but not limited to:Electron spectroscopy for chemical analysis (ESCA or XPS),Auger electron spectroscopy (AES),Fourier transform infrared red spectroscopy (FTIR),Secondary ion mass spectrometry (SIMS), andElectron dispersive spectrometry (EDS) and particle induced x-ray emission (PIXE).1.1 This test method covers the quantitative determination of tungsten and silicon concentrations in tungsten/silicon (WSix) semiconductor process films using Rutherford Backscattering Spectrometry (RBS). (1) This test method also covers the detection and quantification of impurities in the mass range from phosphorus Å (31 atomic mass units (amu) to antimony (122 amu).1.2 This test method can be used for tungsten silicide films prepared by any deposition or annealing processes, or both. The film must be a uniform film with an areal coverage greater than the incident ion beam (∼2.5 mm).1.3 This test method accurately measures the following film properties: silicon/tungsten ratio and variations with depth, tungsten depth profile throughout film, WSix film thickness, argon concentrations (if present), presence of oxide on surface of WSix films, and transition metal impurities to detection limits of 1×1014 atoms/cm2.1.4 This test method can detect absolute differences in silicon and tungsten concentrations of ±3 and ±1 atomic percent, respectively, measured from different samples in separate analyses. Relative variations in the tungsten concentration in depth can be detected to ±0.2 atomic percent with a depth resolution of ±70Å.1.5 This test method supports and assists in qualifying WSix films by electrical resistivity techniques.1.6 This test method can be performed for WSix films deposited on conducting or insulating substrates.1.7 This test method is useful for WSix films between 20 and 400 nm with an areal coverage of greater than 1 by 1 mm2.1.8 This test method is non-destructive to the film to the extent of sputtering.1.9 A statistical process control (SPC) of WSix films has been monitored since 1993 with reproducibility to ±4 %.1.10 This test method produces accurate film thicknesses by modeling the film density of the WSix film as WSi2 (hexagonal) plus excess elemental Si2. The measured film thickness is a lower limit to the actual film thickness with an accuracy less than 10 % compared to SEM cross-section measurements (see 13.4).1.11 This test method can be used to analyze films on whole wafers up to 300 mm without breaking the wafers. The sites that can be analyzed may be restricted to concentric rings near the wafer edges for 200-mm and 300-mm wafers, depending on system capabilities.1.12 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.13 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. The reader is referenced to Section 8 of this test method for references to some of the regulatory, radiation, and safety considerations involved with accelerator operation.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 The analyzer site precision is an estimate of the variability that can be expected in a UAR or a PPTMR produced by an analyzer when applied to the analysis of the same material over an extended time period.4.2 For applications where the process analyzer system results are required to agree with results produced from an independent PTM, a mathematical function is derived that relates the UARs to the PPTMRs. The application of this mathematical function to an analyzer result produces a predicted PPTMR. For analyzers where the mathematical function, that is, a correlation, is developed by D7235, the analyzer site precision of the UARs is a required input to the computation.4.3 After the correlation relationship between the analyzer results and primary test method results has been established, a probationary validation (see D3764 and D6122) is performed using an independent but limited set of materials that were not part of the correlation activity. This probationary validation is intended to demonstrate that the PPTMRs agree with the PTMRs to within user-specified requirements for the analyzer system application. The analyzer site precision is a required input to the probationary validation procedures.4.3.1 If the process stream analyzer system and the primary test method are based on the same measurement principle(s), or, if the process stream analyzer system uses a direct and well-understood measurement principle that is similar to the measurement principle of the PTM then validation is done via D3764. Practice D3764 also applies if the process stream analyzer system uses a different measurement technology from the PTM, provided that the calibration protocol for the direct output of the analyzer does not require use of the PTM.4.3.2 If the process stream analyzer system utilizes an indirect or mathematically modeled measurement principle such as chemometric or multivariate analysis techniques where PTMRs are required for the development of the chemometric or multivariate model, then validation of the analyzer is done using Practice D6122.4.3.3 Both the D3764 and D6122 validation practices utilize the statistical methodology of Practice D6708 to conduct the probationary validation. This methodology requires that the site precision for the PTM and the analyzer site precision be available.4.4 The procedures described herein also serve as the basis for a process analyzer quality control system. A representative sample of the QC material is introduced into the analyzer system in a repeatable fashion. Such sample introduction permits capturing the effect of the analyzer system operating variables on the UAR and PPTMR output signal from the process analyzer. By comparing the observed analyzer responses to the expected response for the QC sample, the fitness for use of the analyzer system can be determined.1.1 This practice describes a procedure to quantify the site precision of a process analyzer via repetitive measurement of a single process sample over an extended time period. The procedure may be applied to multiple process samples to obtain site precision estimates at different property levels1.1.1 The site precision is required for use of the statistical methodology of D6708 in establishing the correlation between analyzer results and primary test method results using Practice D7235.1.1.2 The site precision is also required when employing the statistical methodology of D6708 to validate a process analyzer via Practices D3764 or D6122.1.2 This practice is not applicable to in-line analyzers where the same quality control sample cannot be repetitively introduced.1.3 This practice is meant to be applied to analyzers that measure physical properties or compositions.1.4 This practice can be applied to any process analyzer system where the feed stream can be captured and stored in sufficient quantity with no stratification or stability concerns.1.4.1 The captured stream sample introduction must be able to meet the process analyzer sample conditioning requirements, feed temperature and inlet pressure.1.4.2 This practice is designed for use with samples that are single liquid phase, petroleum products whose vapor pressure, at sampling and sample storage conditions, is less than or equal to 110 kPa (16.0 psi) absolute and whose D86 final boiling point is less than or equal to 400 °C (752 °F).NOTE 1: The general procedures described in this practice may be applicable to materials outside this range, including multiphase materials, but such application may involve special sampling and safety considerations which are outside the scope of this practice.1.5 The values for operating conditions are stated in SI units and are to be regarded as the standard. The values given in parentheses are the historical inch-pound units for information only.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This practice covers the full-length preservative treatment of utility poles by the thermal process.1.2 Poles furnished under this practice shall be limited to the following species: Douglas fir (Pseudotsuga menziesii),Lodgepole pine (Pinus contorta),Alaska yellow cedar (Chamaecyparis nootkatensis),Northern white cedar (Thuja occidentalis),and Western red cedar (Thuja plicata).1.3 The purchaser should note that requirements both within and between species vary and care must be used in selection of specific options for the intended use and service area.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
125 条记录,每页 15 条,当前第 9 / 9 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页