微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 156元 / 折扣价: 133 加购物车

在线阅读 收 藏

定价: 156元 / 折扣价: 133 加购物车

在线阅读 收 藏

4.1 Permittivity and dissipation factor are sensitive to changes in chemical composition, impurities, and homogeneity. Measurement of these properties is, therefore, useful for quality control and for determining the effect of environments such as moisture, heat, or radiation.1.1 This test method covers the determination of the relative permittivity (dielectric constant) and dissipation factor of solid dielectrics from 50 Hz to 10 MHz over a range of temperatures from −80 to 500 °C.2,3 Two procedures are included as follows:1.1.1 Procedure A—Using Micrometer Electrode.1.1.2 Procedure B—Using Precision Capacitor.NOTE 1: In common usage the word “relative” is frequently dropped.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 There are many underground structures that are constructed for permanent or long-term use. Often, these structures are subjected to a relatively constant load. Creep tests provide quantitative parameters for stability analysis of these structures.5.2 The deformation and strength properties of rock cores measured in the laboratory usually do not accurately reflect large-scale in situ properties, because the latter are strongly influenced by joints, faults, inhomogeneities, weakness planes, and other factors. Therefore, laboratory test results of intact specimens shall be utilized with proper judgment in engineering applications.NOTE 1: The statements on precision and bias contained in this test method; the precision of this test method is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing. Users of this test method are cautioned that compliance with Practice D3740 does not in itself assure reliable testing. Reliable testing depends on many factors; Practice D3740 provides a means of evaluating some of these factors.1.1 These test methods cover the creep behavior of intact weak and hard rock core in fixed states of stress at ambient (room) or elevated temperatures. For creep behavior at lower temperatures refer to Test Method D5520. The methods specify the apparatus, instrumentation, and procedures necessary to determine the strain as a function of time under sustained load at constant temperature and when applicable, constant humidity.1.1.1 Hard rocks are considered those with a maximum axial strain at failure of less than 2 %. Weak rocks include such materials as salt, potash, shale, and weathered rock, which often exhibit very large strain at failure.1.2 This standard consists of three methods that cover the creep capacity of core specimens.1.2.1 Method A—Creep of Hard Rock Core Specimens in Uniaxial Compression at Ambient or Elevated Temperature.1.2.2 Method B—Creep of Weak Rock Core Specimens in Uniaxial Compression at Ambient or Elevated Temperature.1.2.3 Method C—Creep of Rock Core Specimens in Triaxial Compression at Ambient or Elevated Temperature.1.3 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.4 The procedures used to specify how data are collected/recorded and calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to commensurate with these considerations. It is beyond the scope of these test methods to consider significant digits used in analysis methods for engineering design.1.5 Units—The values stated in SI units are to be regarded as the standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and to determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Section 7.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This method is used to determine the force required to rupture textile fabric by forcing a steel ball through the fabric with a constant-rate-of-extension tensile tester.5.2 This is a new method and therefore the history of data is very small, however the agreement of within- laboratory data suggest this method may be considered for acceptance testing of commercial shipments with caution.5.2.1 If there are differences of practical significance between reported test results for two laboratories (or more), comparative test should be performed to determine if there is a statistical bias between them, using competent statistical assistance. As a minimum, samples used for such comparative test should be as homogeneous as possible, drawn from the same lot of material as the samples that resulted in disparate results during initial testing, and randomly assigned in equal numbers to each laboratory. Other fabrics with established test values may also be used for these comparative tests. The test results from the laboratories involved should be compared using a statistical test for unpaired data, at a probability level chosen prior to the testing series. If bias is found, either its cause must be found and corrected, or future test results for that fabric must be adjusted in consideration of the known bias.1.1 This test method describes the measurement for bursting strength of woven and knitted textiles taken from rolls of fabric or fabric taken from garments.NOTE 1: For the measurement of bursting strength with a hydraulic or pneumatic machine, refer to Test Method D3786. For the measurement of the bursting strength by means of a ball burst mechanism, refer to Test Method D3787NOTE 2: Constant Rate of Traverse (CRT) machines and Constant Rate of Extension (CRE) machines have been shown to provide different results. When using a CRT device, refer to Test Method D3787.1.2 The values stated in either SI units or U.S. customary units are to be regarded as standard, but must be used independently of each other. The U.S. customary units may be approximate.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
79 条记录,每页 15 条,当前第 1 / 6 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页