微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 689元 / 折扣价: 586

在线阅读 收 藏

1.1 This test method measures the attack on refractories by molten glass under conditions intended to simulate glass-contact service by exposing one face of the refractory to be tested to molten glass while a temperature gradient is maintained through the refractory. Note 1-Since the test method is intended primarily for soda-lime-silica glasses, some modification of the conditions, procedure, or apparatus may be required for other compositional systems. 1.2 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 This practice is for optimizing the parameters used in the determination of trace elements in metals and alloys by the graphite furnace atomic absorption spectrometric method. It also describes the practice for checking the spectrometer performance. The work is expected to be performed in a properly equipped laboratory by trained operators and appropriate disposal procedures are to be followed.1.1 This practice covers the optimization of graphite furnace atomic absorption spectrometers and the checking of spectrometer performance criteria.1.2 The values stated in SI units are to be regarded as the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This specification covers furnace-butt-welded, black, plain-end or threaded-end, steel pipe for use in the conveyance of fluids under pressure. Pipe in sizes NPS 1/2 to 4, inclusive, with nominal wall thickness 0.350 in. [8.9 mm] or less, as given in ASME B36.10M is included. Pipe having other dimensions, in this size range, may be furnished provided such pipe complies with all other requirements of this specification.1.2 For plain-end pipe, it is intended that the pipe be capable of being circumferentially welded in the field when welding procedures in accordance with the requirements of the applicable pipeline construction code are used.1.3 The values stated in either inch-pound units or in SI units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values in each system are not exact equivalents; therefore, each system is to be used independently of the other.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 This practice is intended for users who are attempting to establish GF-AAS procedures. It should be helpful for establishing a complete atomic absorption analysis program.1.1 This practice covers a procedure for the determination of microgram per milliliter (μg/mL) or lower concentrations of elements in solution using a graphite furnace attached to an atomic absorption spectrometer. A general description of the equipment is provided. Recommendations are made for preparing the instrument for measurements, establishing optimum temperature conditions and other criteria which should result in determining a useful calibration concentration range, and measuring and calculating the test solution analyte concentration.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific safety hazard statements are given in Section 9.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The percent sulfur content of the ash derived from coal or coke can be calculated to sulfur trioxide content. This information can be used in combination with results from the determination of major, minor and or trace elements in the same ash to calculate results on a sulfur trioxide free-basis or to calculate total recovered analyte.1.1 This test method describes a procedure using a high-temperature tube furnace and infrared detection for the determination of sulfur in coal and coke combustion residues, including lab ashes and residues from coal and coke combustion.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 While actual building fire exposure conditions are not duplicated, this test method will assist in indicating those materials which do not act to aid combustion or add appreciable heat to an ambient fire.5.2 This test method does not apply to laminated or coated materials.5.3 This test method is technically equivalent to ISO 1182.5.4 When appropriate pass/fail criteria are applied, materials that are reported as passing this test by complying with those criteria (such as the ones in Appendix X2) are typically classified as noncombustible materials.1.1 This fire-test-response test method covers the determination under specified laboratory conditions of the combustibility of building materials. Under certain conditions, with the appropriate pass/fail criteria, the results from this test are used to classify materials as noncombustible materials.1.2 Limitations of this fire-test response test method are shown below.1.2.1 This test method does not apply to laminated or coated materials.1.2.2 This test method is not suitable or satisfactory for materials that soften, flow, melt, intumesce or otherwise separate from the measuring thermocouple.1.2.3 This test method does not provide a measure of an intrinsic property.1.2.4 This test method does not provide a quantitative measure of heat generation or combustibility; it simply serves as a test method with selected (end point) measures of combustibility.1.2.5 This test method does not measure the self-heating tendencies of materials.1.2.6 In this test method materials are not being tested in the nature and form used in building aplications. The test specimen consists of a small, specified volume that is either (1) cut from a thick sheet; (2) assembled from multiple thicknesses of thin sheets; or (3) placed in a container if composed of grarnular powder or loose fiber materials.1.2.7 Results from this test method apply to the specific test apparatus and test conditions and are likely to vary when changes are made to one or more of the following: (1) the size, shape, and arrangement of the specimen; (2) the distribution of organice content; (3) the exposure temperature; (4) the air supply; (5) the location of thermocouples.1.3 This test method references notes and footnotes that provide explanatory information. These notes and footnotes, excluding those in tables and figures, shall not be considered as requirements of this test method.1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.1.5 This test method is technically equivalent to ISO 1182:2010 (see also Annex A2 and 6.4.5).NOTE 1: While developed as technically equivalent to ISO 1182:2010, a change implemented in ISO 1182:2020 added a second furnace thermocouple to that standard, while this test method continues to use one furnace thermocouple.1.6 This standard is used to measure and describe the response of materials, products, or assemblies to heat and flame under controlled conditions, but does not by itself incorporate all factors required for fire-hazard or fire-risk assessment of the materials, products, or assemblies under actual fire conditions.1.7 Fire testing is inherently hazardous. Adequate safeguards for personnel and property shall be employed in conducting these tests.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Small quantities of sodium, 1 to 10 μg/L, can be significant in high pressure boiler systems and in nuclear power systems. Steam condensate from such systems must have less than 10 μg/L. In addition, condensate polishing system effluents should have less than 1 μg/L. Graphite furnace atomic absorption spectroscopy (GFAAS) represents technique for determining low concentrations of sodium.1.1 This test method covers the determination of trace sodium in high purity water. The method range of concentration is 1 to 40 μg/L sodium. The analyst may extend the range once its applicability has been ascertained.NOTE 1: It is necessary to perform replicate analysis and take an average to accurately determine values at the lower end of the stated range.1.2 This test method is a graphite furnace atomic absorption spectrophotometric method for the determination of trace sodium impurities in ultra high purity water.1.3 This test method has been used successfully with a high purity water matrix.2 It is the responsibility of the analyst to determine the suitability of the test method for other matrices.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Elemental constituents in potable water, receiving water, and wastewater need to be identified for support of effective pollution control programs. Currently, one of the most sensitive and practical means for measuring low concentrations of trace elements is by graphite furnace atomic absorption spectrophotometry. ICP-MS may also be appropriate but at a higher instrument cost. See Test Method D5673.1.1 This practice covers the general considerations for the quantitative determination of trace elements in water and wastewater by graphite furnace atomic absorption spectrophotometry. Furnace atomizers are a most useful means of extending detection limits; however, the practice should only be used at concentration levels below the optimum range of direct flame aspiration atomic absorption spectrophotometry. Because of differences between various makes and models of satisfactory instruments, no detailed operating instructions can be provided for each instrument. Instead, the analyst should follow the instructions provided by the manufacturer of a particular instrument.1.2 Wavelengths, estimated detection limits, and optimum concentration ranges are given in the individual methods. Ranges may be increased or decreased by varying the volume of sample injected or the instrumental settings or by the use of a secondary wavelength. Samples containing concentrations higher than those given in the optimum range may be diluted or analyzed by other techniques.1.3 This technique is generally not applicable to brines and seawater. Special techniques such as separation of the trace elements from the salt, careful temperature control through ramping techniques, or matrix modification may be useful for these samples.1.4 The analyst is encouraged to consult the literature as provided by the instrument manufacturer as well as various trade journals and scientific publications.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The U.S. Environmental Protection Agency Regulations, 40 CFR 266, require that boilers, cement kilns, and other industrial furnaces utilizing waste-derived fuel adhere to specific guidelines in assessing potential metals emissions. A common approach for estimating potential emissions is performing total metals analysis on all feed stream materials. This practice describes a multi-stage microwave-assisted digestion procedure that solubilizes trace elements for spectroscopic analyses.1.1 This practice describes the multi-stage microwave digestion of typical industrial furnace feed stream materials using nitric, hydrofluoric, hydrochloric, and boric acids for the subsequent determination of trace metals.1.2 This practice has been used successfully on samples of coal, coke, cement raw feed materials, and waste-derived fuels composed primarily of waste paint-related material in preparation for measuring the following trace elements: Ag, As, Ba, Be, Cd, Cr, Hg, Pb, Sb, and Tl. This practice may be applicable to elements not listed above.1.3 This practice is also effective for other waste materials (for example, fly ash, foundry sand, alum process residue, cement kiln dust, etc.).1.4 The values stated in SI units are to be regarded as standard. Other units of measurement in parentheses in this standard are informational.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in Section 8.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This test method describes the optical emission vacuum spectrometric procedure for examining blast furnace iron (hot metal) containing 4.2 to 5.0 % carbon by the point-to-plane technique. This spectrochemical technique is intended specifically for the analysis of silicon, manganese, phosphorus, titanium, and sulfur in specified concentration ranges in blast furnace iron. Apparatus needed for this procedure shall include sample mold, grinder, supporting electrode, excitation source, spectrometer, and appropriate measuring system. The sample is excited in an inert gas atmosphere by a controlled triggered capacitor discharge using the point-to-plane technique. Using a vacuum spectrometer, the radiant energies of selected analytical lines and an internal standard line are measured by photomultipliers. The output current of each photomultiplier is accumulated and stored during the exposure period as a charge on an associated capacitor, where it appears as a measurable voltage. At the end of the exposure period the voltages corresponding to the analytical lines relative to the voltage for the internal standard line are measured. The measuring system may be calibrated in terms of percent concentration.1.1 This test method describes the spectrochemical procedure for the analysis of blast furnace iron (hot metal) containing 4.2 to 5.0 % carbon for the following elements in the indicated ranges:Elements Concentration Range, %Silicon 0.50 to 2.00Manganese 0.20 to 1.50Phosphorus 0.020 to 0.15Titanium 0.02 to 0.10Sulfur 0.010 to 0.0501.2This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 At high temperatures aviation turbine fuels can oxidize and produce insoluble deposits that are detrimental to aircraft propulsion systems. Very low copper concentrations (in excess of 50 μg/kg) can significantly accelerate this thermal instability of aviation turbine fuel. Naval shipboard aviation fuel delivery systems contain copper-nickel piping, which can increase copper levels in the fuel. This test method may be used for quality checks of copper levels in aviation fuel samples taken on shipboard, in refineries, and at fuel storage depots.1.1 This test method covers the determination of copper in jet fuels in the range of 5 μg/kg to 100 μg/kg using graphite furnace atomic absorption spectrometry. Copper contents above 100 μg/kg may be determined by sample dilution with kerosine to bring the copper level into the aforementioned method range. When sample dilution is used, the precision statements do not apply.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 702元 / 折扣价: 597 加购物车

在线阅读 收 藏

5.1 Barium ranks about sixth in order of abundance in nature; however, it is normally found in only trace quantities in drinking water. Consumption, inhalation, or absorption of 500 to 600 mg is considered fatal to human beings. Lower levels may result in disorders of the heart, blood vessels, and nerves. The drinking water standards set the maximum contaminant level for barium as 2 mg/L.31.1 This test method covers the determination of dissolved and total recoverable barium in most waters and wastewaters.1.2 This test method was evaluated in the range from 33.5 to 132 μg/L of barium. The range can be increased or decreased by varying the volume of sample injected or the instrumental settings. High concentrations may be diluted but preferably should be analyzed by direct aspiration atomic absorption spectrophotometry.1.3 This test method has been used successfully with waste treatment plant effluent water, lake water, filtered tap water, and well water. It is the responsibility of the analyst to determine the suitability of the test method for other matrices.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

6.1 The health of workers in many industries, for example, mining, metal refining, battery manufacture, construction, etc., is at risk through exposure by inhalation of particulate lead and lead compounds. Industrial hygienists and other public health professionals need to determine the effectiveness of measures taken to control workers' exposure, and this is generally achieved by making workplace air measurements. This standard has been published in order to make available a method for making valid exposure measurements for lead. It will be of benefit to: agencies concerned with health and safety at work; industrial hygienists and other public health professionals; analytical laboratories; industrial users of metals and metalloids and their workers, etc. It has been assumed in the drafting of this standard that the execution of its provisions, and the interpretation of the results obtained, is entrusted to appropriately qualified and experienced people.6.2 The measuring procedure shall comply with any relevant International, European or National Standard that specifies performance requirements for procedures for measuring chemical agents in workplace air (for example, ISO 20581).1.1 This standard specifies flame and graphite furnace atomic absorption spectrometric methods for the determination of the time-weighted average mass concentration of particulate lead and lead compounds in workplace air.1.2 The method is applicable to personal sampling of the inhalable fraction of airborne particles, as defined in ISO 7708, and to static (area) sampling.1.3 The sample dissolution procedure specifies hot plate or microwave digestion, or ultrasonic extraction (10.2). The sample dissolution procedure is not effective for all lead compounds (see Section 5). The use of an alternative, more vigorous dissolution procedure is necessary when it is desired to extract lead from compounds present in the test atmosphere that are insoluble using the dissolution procedures described herein. For example if it is desired to determine silicate lead, a hydrofluoric acid dissolution procedure is required.1.4 The flame atomic absorption method is applicable to the determination of masses of approximately 1 to 200 μg of lead per sample, without dilution (1).2 The graphite furnace atomic absorption method is applicable to the determination of masses of approximately 0.01 to 0.5 μg of lead per sample, without dilution (1).1.5 The ultrasonic extraction procedure has been validated for the determination of masses of approximately 20 to 100 μg of lead per sample, for laboratory-generated lead fume air filter samples (2).1.6 The concentration range for lead in air for which this procedure is applicable is determined in part by the sampling procedure selected by the user (see Section 9).1.7 Anions that form precipitates with lead may interfere, but this potential interference is overcome by the addition of the disodium salt of ethylenediamine tetraacetic acid (EDTA) when necessary.1.8 The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method is capable of yielding duplicate test data, in 20 min or less, for a simple carbon black content determination.5.2 This test method is suitable for manufacturing quality control, technical service, and research work.5.3 For referee requirements, the number of replicate measurements is increased. Alternatively, a control sample of known carbon black content is tested with the unknown sample.5.4 Test Method D1603 is available for referee testing.1.1 This test method covers the determination of black polyethylene compounds containing channel or furnace black. It is not applicable to thermal black.1.2 This test method is not suitable for plastics that char on pyrolysis.1.3 The values stated in SI units are to be regarded as the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in Section 7.NOTE 1: There is no known ISO equivalent to this standard.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
27 条记录,每页 15 条,当前第 1 / 2 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页