微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 293元 / 折扣价: 250

在线阅读 收 藏

定价: 819元 / 折扣价: 697 加购物车

在线阅读 收 藏

定价: 260元 / 折扣价: 221 加购物车

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method establishes the requirements for a standardized method of evaluating the performance of crimped-type electrical connections having solid or stranded conductors.5.2 In order to achieve a successful crimped connection, the crimping tool must deform the material of the crimp barrel or barrel tab(s) around the conductor. As a consequence, the conductor surfaces are placed under compression by the crimp terminal and areas of contact are established between the conductor and the crimp barrel. These areas provide the desired electrical connection. A reliable crimped connection is one that is capable of maintaining the contact between the conductor and crimp barrel so that a stable electrical connection is maintained when it is exposed to the conditions it was designed to endure during its useful life.5.3 Evaluation testing is designed to ensure that a particular design crimped connection system consisting of conductor and component and associated tooling is capable of achieving a reliable electrical and mechanical connection. After the evaluation is completed, if any change in the system parts is made, the system should be reevaluated using the same procedures.5.4 After completion of the evaluation test, the tensile pull strength results may be used to develop acceptance requirements to be used in inspection of subsequent production lots of crimped connections. An example of such an acceptance requirement is shown in Appendix X1.5.5 The aging test, 33 days exposure at 118°C, has been used in the telecommunications industry to simulate 40 years of service at a moderately elevated temperature of 50°C, an environment that components experience within large banks of telephone equipment. This environment is similar to that seen in a wide range of electronic systems operating indoors containing active components that dissipate power. The test is designed to reproduce the stress relaxation of copper alloys in such service and has been used extensively in evaluating wire wrap connections. It also accelerates other thermally activated processes such as oxidation although their acceleration factors may be different from that of copper stress relaxation.5.6 The aging test accelerates stress relaxation processes and other thermally activated processes but does not address some other possible hazards such as corrosion. Additional testing may be appropriate if the intended service environment presents such hazards.1.1 This test method establishes the requirements for a standardized method of evaluating the quality of crimped-type electrical connections to solid or stranded conductors. This test method applies to 16-gauge and smaller diameter copper wire, coated or uncoated.1.2 This test method is applicable to connection systems intended for indoor use, or for use in environmentally protected enclosures. Additional testing may be required to assure satisfactory performance in applications where high humidity or corrosive environment, or both, may be present.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Safety Data Sheet (SDS) for this product/material as provided by the manufacturer, to establish appropriate safety, health, and environmental practices, and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM F707/F707M-94(2019)e1 Standard Specification for Modular Gauge Boards Active 发布日期 :  1970-01-01 实施日期 : 

This specification covers modular gage boards for mounting dial pressure gages and dial thermometers for miscellaneous shipboard applications. Gage boards under this specification are suitable for pressure gages and dial thermometers with either turret or back flanged type cases and with either back or bottom connections. Gage boards may be furnished in two types and grades, namely: Type I, Type II, Grade a, and Grade b. Unless otherwise specified the gage boards shall be manufactured from the specified carbon steel for Grade a and form the specified aluminum alloy for Grade b. Materials shall be capable of being bent at room temperature through the prescribed angle and direction without cracking on the outside of the bent portion. Unless otherwise specified, gage boards shall be drilled for mounting the specified dial sizes. When specified, drilling shall be limited to one size gage for either Type I or Type II gage boards. The dimensional requirements for the gage boards are detailed and illustrated.1.1 This specification covers modular gauge boards for mounting 89-mm [31/2-in.], 114-mm [41/2-in.], 152-mm [6-in.], and 216-mm [81/2-in.] dial size pressure gauges and dial thermometers for miscellaneous shipboard applications.1.2 Gauge boards ordered under this specification are suitable for pressure gauges and dial thermometers with either turret or back flanged type cases and with either back or bottom connections (see Appendix X1).1.3 Gauge mounting dimensions shall be in accordance with ASME B40.1.1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.NOTE 1: Gauge boards covered by this specification are those normally supplied by the shipyard as opposed to the shipyard’s equipment subcontractor.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Either the in situ stresses or the stresses as influenced by an excavation may be determined. This test method is written assuming testing will be done from an underground opening; however, the same principles may be applied to testing in a rock outcrop at the surface.5.2 This test method is generally performed at depths within 50 ft (15 m) of the working face because of drilling difficulties at greater depths. Some deeper testing with this gauge has been done, but should be considered developmental. This test method has a long and proven record and considered very accurate relative to many other techniques, both new and old, out there. Other overcoring methods that use instruments that are different, but follow much of the same basic concepts are now available and can go deeper; however, the pros and cons of each method need to be carefully compared to this test method.5.3 It is also useful for obtaining stress characteristics of existing concrete and rock structures, such as mass concrete dams, for safety (such as alkali aggregate issues), vetting of computer models, and modification investigations.5.4 This test method is difficult in rock with fracture spacings of less than 5 in. (130 mm). A large number of tests may be required in order to obtain data.5.5 The rock tested is assumed to be homogeneous and linearly elastic. The moduli of deformation and Poisson's ratio of the rock overcore are required for data reduction. The preferred method for determining modulus of deformation values involves biaxially testing the recovered overcores, as described in Section 8. If this is not possible, values may be determined from uniaxial testing of smaller cores in accordance with Test Method D7012. However, this generally decreases the accuracy of the stress determination in all but the most homogeneous and isotropic rock. Modulus of deformation results may be used from other in situ tests, such as Test Methods D4394 and Test Method D4395, D4971 or other test methods that can determine the modulus of deformation in specific directions.5.6 The physical conditions present in three separate drill holes are assumed to prevail at one point in space to allow the three-dimensional stress field to be estimated. This assumption is difficult to verify, as rock material properties and the local stress field can vary significantly over short distances. Confidence in this assumption increases with careful selection of the test site.5.7 Local geologic features with mechanical properties different from those of the surrounding rock can influence significantly the local stress field. In general, these features, if known to be present, should be avoided when selecting a test site location. It is often important, however, to measure the stress level on each side of a large fault. All boreholes at a single test station should be in the same formation or rock mass.5.8 Since most overcoring is performed to measure in situ stress levels, the boreholes should be drilled from a portion of the test opening and the testing performed at least three excavation diameters from any free surface. The smallest opening that will accommodate the drilling equipment is recommended; openings from 8 to 12 ft (2.4 to 3.6 m) in diameter have been found satisfactory.5.9 A minimum of three nonparallel boreholes is required to determine the complete stress tensor. The optimum angle each hole makes with the other two (trihedral arrangement) is 90°. However, angles of 45° provide satisfactory results for determining all three principal stresses. Boreholes inclined upward are generally easier to work in than holes inclined downward, particularly in fractured rock.NOTE 2: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/ and the like. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This test method covers the determination of the ambient local stresses (principal and secondary) in a rock mass and the equipment required to perform in situ stress tests using a three-component borehole deformation gauge (BDG) that was developed by the U.S. Bureau of Mines (USBM); see Note 1.1.2 The test procedure and method of data reduction are described, including the theoretical basis and assumptions involved in the calculations.1.3 A section is included on troubleshooting equipment malfunctions.NOTE 1: The gauge used in this test method is commonly referred to by users as a USBM gauge (U.S. Bureau of Mines three-component borehole deformation gauge).21.4 The values stated in inch-pound units are to be regarded as standard, except as noted below. The values given in parentheses are mathematical conversions to SI units, which are provided for information only and are not considered standard. Reporting of test results in units other than SI shall not be regarded as nonconformance with this test method.1.5 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 The method described determines wet density and gravimetric water content by correlating complex impedance measurement data to an empirically developed model. The empirical model is generated by comparing the electrical properties of typical soils encountered in civil construction projects to their wet densities and gravimetric water contents determined by other accepted methods.5.2 The test method described is useful as a rapid, non-destructive technique for determining the in-place total density and gravimetric water content of soil and soil-aggregate mixtures and the determination of dry density.5.3 This method may be used for quality control and acceptance of compacted soil and soil-aggregate mixtures as used in construction and also for research and development. The non-destructive nature allows for repetitive measurements at a single test location and statistical analysis of the results.NOTE 2: The quality of the result produced by this standard test method is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the requirements of Practice D3740 are generally considered capable of competent and objective sampling/testing/inspection, and the like. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluation some of those factors.1.1 This test method covers the procedures for determining in-place properties of non-frozen, unbound soil and soil aggregate mixtures such as total density, gravimetric water content and relative compaction by measuring the intrinsic impedance of the compacted soil.1.1.1 The method and device described in this test method are intended for in-process quality control of earthwork projects. Site or material characterization is not an intended result.1.2 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.2.1 The gravitational system of inch-pound units is used when dealing with inch-pound units. In this system, the pound (lbf) represents a unit of force (weight) while the unit for mass is slugs. The rationalized slug unit is not given in this standard.1.2.2 In the engineering profession, it is customary practice to use, interchangeably, units representing both mass and force, unless dynamic calculations are involved. This implicitly combines two separate systems of units, that is, the absolute system and the gravimetric system. It is undesirable to combine the use of two separate systems within a single standard. The use of balances or scales recording pounds of mass (lbm), or the recording of density in lbm/ft3 should not be regarded as nonconformance with this standard.1.3 All observed and calculated values shall conform to the Guide for Significant Digits and Rounding established in Practice D6026.1.3.1 The procedures used to specify how data is collected, recorded, and calculated in this standard are regarded as industry standard. In addition, they are representative of the significant digits that should generally be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or decrease the number of significant digits of reported data commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in the analysis methods for engineering design.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
28 条记录,每页 15 条,当前第 1 / 2 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页