微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 260元 / 折扣价: 221

在线阅读 收 藏

定价: 345元 / 折扣价: 294

在线阅读 收 藏

定价: 260元 / 折扣价: 221 加购物车

在线阅读 收 藏

定价: 260元 / 折扣价: 221 加购物车

在线阅读 收 藏

This specification covers double submerged-arc welded, black, plain end steel pipes for use in the conveyance of fluids under pressure. The pipes shall be capable of being welded in the field. Skelp widths for helical seam pipe shall be neither less than 0.8 nor more than 3.0 times the pipe's specified outside diameter. Skelp end welds shall not be permitted in finished pipe, except for helical seam pipe having its skelp end welds manufactured by double submerged-arc welding. For such pipes, skelp ends shall have been properly prepared for welding. The specimens shall undergo the following tests: tension test, guided bend test, Charpy V-notch test, and hydrostatic test. After hydrostatic test, nondestructive examinations by ultrasonic inspection shall be done.1.1 This specification covers double submerged-arc welded, black, plain end steel pipe for use in the conveyance of fluids under pressure. Pipe in sizes NPS 16 and larger, as given in ASME B36.10, are included; pipe having other dimensions, in this size range, are permitted, provided such pipe complies with all other requirements of this specification.1.2 It is intended that pipe be capable of being welded in the field when welding procedures in accordance with the requirements of the applicable pipeline construction code are used.1.3 The values stated in either inch-pound units or in SI units are to be regarded separately as standard. The values in each system are not exact equivalents, therefore, each system is to be used independently of the other, without combining values in any way.1.4 The following precautionary statement pertains to the test method portion, Section 14 of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 These practices provide a means for evaluating traveled surface-roughness characteristics directly from a measured profile. The calculated values represent vehicular response to traveled surface roughness.4.2 These practices provide a means of calibrating response-type road-roughness measuring equipment.41.1 These practices cover the calculation of vehicular response to longitudinal profiles of traveled surface roughness.1.2 These practices utilize computer simulations to obtain two vehicle responses: (1) axle-body (sprung mass) motion, or (2) body (sprung mass) acceleration, as a function of time or distance.1.3 These practices present standard vehicle simulations (quarter, half, and full car) for use in the calculations.1.4 The values stated in SI units are to be regarded as the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 These practices provide a means for evaluating truck ride quality and pavement loading exerted by truck tires.1.1 These practices cover the calculation of truck response to longitudinal profiles of traveled surface roughness.1.2 These practices utilize computer simulations to obtain two truck responses including: sprung and unsprung mass vertical displacement, velocity, and acceleration; and sprung mass pitch angular displacement, velocity, and acceleration.1.3 These practices present standard truck simulations (quarter truck, half-single unit truck, and half-tractor semitrailer) for use in the calculations.1.4 The values stated in SI units are to be regarded as the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This practice provides a means for obtaining a quantitative estimate of a pavement property defined as ride quality or rideability using longitudinal profile measuring equipment.5.1.1 The Ride Number (RN) is portable because it can be obtained from longitudinal profiles obtained with a variety of instruments.5.1.2 The RN is stable with time because true RN is based on the concept of a true longitudinal profile, rather than the physical properties of particular type of instrument.5.2 Ride quality information is a useful input to the pavement manage systems (PMS) maintained by transportation agencies.5.2.1 The subjective ride quality estimate produced by this practice has been determined (6) to be highly correlated (r = 0.92) with measured subjective ride quality and to produce a low standard estimate of error (0.29 RN units) for the ride quality estimate.5.2.2 The subjective ride quality estimates produced by this practice were found to be not significantly different with respect to pavement type, road class, vehicle size, vehicle speed (within posted speed limits), and regionality over the range of variables included in the experiment (1-4).5.2.3 The subjective ride quality estimates produced by this practice have been found to be good predictors of the need of non-routine road maintenance for the various road classifications (3).5.3 The use of this practice to produce subjective ride quality estimates from measured longitudinal profile eliminates the need for expensive ride panel studies to obtain the same ride quality information.1.1 This practice covers the mathematical processing of longitudinal profile measurements to produce an estimate of subjective ride quality, termed Ride Number (RN).1.2 The intent of this practice is to provide the highway community a standard practice for the computing and reporting of an estimate of subjective ride quality for highway pavements.1.3 This practice is based on an algorithm developed in National Cooperative Highway Research Project (NCHRP) 1–23 (1, 2),2 two Ohio Department of Transportation ride quality research projects (3, 4), and work presented in Refs (5, 6).1.4 The computed estimate of subjective ride quality produced by this practice was named Ride Number (RN) in NCHRP Research Project 1–23 (1, 2) to differentiate it from other measures of ride quality computed from longitudinal profile. Eq 1 of 8.2 represents the mathematical definition of Ride Number.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏
44 条记录,每页 15 条,当前第 1 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页