微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

3.1 This practice describes a weathering box test fixture and provides uniform exposure guidelines to minimize the variables encountered during outdoor exposure testing.3.2 This practice may be useful in comparing the performance of different materials at one site or the performance of the same material at different sites, or both.3.3 Since the combination of elevated temperature and solar radiation may cause some solar collector cover materials to degrade more rapidly than either alone, a weathering box that elevates the temperature of the cover materials is used.3.4 This practice is intended to assist in the evaluation of solar collector cover materials in the operational, not stagnation mode. Insufficient data exist to obtain exact correlation between the behavior of materials exposed according to this practice and actual in-service performance.3.5 Means of evaluation of effects of weathering are provided in Practice E781, and in other ASTM test methods that evaluate material properties.3.6 Tests of the type described in this practice may be used to evaluate the stability of solar collector cover materials when exposed outdoors to the varied influences which comprise weather. Exposure conditions are complex and changeable. Important factors are solar radiation, temperature, moisture, time of year, presence of pollutants, etc. These factors vary from site to site and should be considered in selecting locations for exposure. Control samples must always be used in weathering tests for comparative analysis. Outdoor exposure for at least two years is required to make evident changes, such as surface degradation without the use of sophisticated analytical equipment.3.7 Temperature conditions attained with this box may not exactly duplicate those that occur under operational conditions with fluid flow. Dependent on environmental exposure conditions, the cover plate temperatures obtained with this box may be higher or lower than those obtained under operational conditions. Additional testing under stagnation conditions, although not covered by this practice, should be conducted.NOTE 1: Research has shown that exposure outdoors at sites having the combination of high levels of humidity, solar energy, and ambient temperature can cause more severe degradation of some polymeric cover materials (for example, microcracking and leaching of UV radiation screening additives) than exposure in arid climates.NOTE 2: Stagnation conditions are a normal occurrence for solar collectors, for example, during operation when the storage is fully charged; when the collectors are initially installed, before system start-up; or when the system is shut down for maintenance or seasonal considerations such as heating only systems in the summer.1.1 This practice provides a procedure for the exposure of cover materials for flat-plate solar collectors to the natural weather environment at temperatures that are elevated to approximate operating conditions.1.2 This practice is suitable for exposure of both glass and plastic solar collector cover materials. Provisions are made for exposure of single and double cover assemblies to accommodate the need for exposure of both inner and outer solar collector cover materials.1.3 This practice does not apply to cover materials for evacuated collectors or photovoltaics.1.4 The values stated in SI units are to be regarded as the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Susceptibility to delamination is one of the major design concerns for many advanced laminated composite structures. Knowledge of a laminated composite material’s resistance to interlaminar fracture is useful for product development and material selection. Furthermore, a measurement of the mode II interlaminar fracture toughness that is independent of specimen geometry or method of force introduction is useful for establishing design allowables used in damage tolerance analyses of composite structures. Knowledge of both the non-precracked and precracked toughnesses allows the appropriate value to be used for the application of interest.5.2 This test method can serve the following purposes:5.2.1 To establish quantitatively the effect of fiber surface treatment, local variations in fiber volume fraction, and processing and environmental variables on GIIc of a particular composite material;5.2.2 To compare quantitatively the relative values of GIIc for composite materials with different constituents;5.2.3 To compare quantitatively the values of GIIc obtained from different batches of a specific composite material, for example, to use as a material screening criterion or to develop a design allowable; and5.2.4 To develop delamination failure criteria for composite damage tolerance and durability analyses.1.1 This test method covers the determination of the mode II interlaminar fracture toughness, GIIc, of unidirectional fiber-reinforced polymer matrix composite laminates under mode II shear loading using the end-notched flexure (ENF) test (Fig. 1).FIG. 1 ENF Test Fixture and Specimen Nomenclature1.2 This method is limited to use with composites consisting of unidirectional carbon-fiber- and glass-fiber-reinforced laminates. This limited scope reflects the experience gained in round robin testing. This test method may prove useful for other types and classes of composite materials; however, certain interferences have been noted (see Section 6).1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3.1 Within the text the inch-pound units are shown in brackets.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This method directly determines the concentrations of dissolved PAH concentrations in environmental sediment pore water samples. The method is important from an environmental regulatory perspective because it can achieve the analytical sensitivities to meet the goals of the USEPA narcosis model for protecting benthic organisms in PAH contaminated sediments. Regulatory methods using solvent extraction have not achieved the wide calibration ranges from nanograms to milligrams per litre and the required levels of detection in the nanogram-per-litre range. In addition, conventional solvent extraction methods require large aliquot volumes (litre or larger), use of large volumes of organic solvents, and filtration to generate the pore water. This approach entails the storage and processing of large volumes of sediment samples and loss of low molecular weight PAHs in the filtration and solvent evaporation steps.5.2 This method can be used to determine nanogram to milligram per litre PAH concentrations in pore water. Small volumes of pore water are required for SPME extraction, only 1.5 mL per determination and virtually no solvent extraction waste is generated.1.1 The U.S. Environmental Protection Agency (USEPA) narcosis model for benthic organisms in sediments contaminated with polycyclic aromatic hydrocarbons (PAHs) is based on the concentrations of dissolved PAHs in the interstitial water or “pore water” in sediment. This test method covers the separation of pore water from PAH-impacted sediment samples, the removal of colloids, and the subsequent measurement of dissolved concentrations of the required 10 parent PAHs and 14 groups of alkylated daughter PAHs in the pore water samples. The “24 PAHs” are determined using solid-phase microextraction (SPME) followed by Gas Chromatography/Mass Spectrometry (GC/MS) analysis in selected ion monitoring (SIM) mode. Isotopically labeled analogs of the target compounds are introduced prior to the extraction, and are used as quantification references.1.2 Lower molecular weight PAHs are more water soluble than higher molecular weight PAHs. Therefore, USEPA-regulated PAH concentrations in pore water samples vary widely due to differing saturation water solubilities that range from 0.2 µg/L for indeno[1,2,3-cd]pyrene to 31 000 µg/L for naphthalene. This method can accommodate the measurement of microgram per litre concentrations for low molecular weight PAHs and nanogram per litre concentrations for high molecular weight PAHs.1.3 The USEPA narcosis model predicts toxicity to benthic organisms if the sum of the toxic units (ΣTUc) calculated for all “34 PAHs” measured in a pore water sample is greater than or equal to 1. For this reason, the performance limit required for the individual PAH measurements was defined as the concentration of an individual PAH that would yield 1/34 of a toxic unit (TU). However, the focus of this method is the 10 parent PAHs and 14 groups of alkylated PAHs (Table 1) that contribute 95 % of the toxic units based on the analysis of 120 background and impacted sediment pore water samples.3 The primary reasons for eliminating the rest of the 5-6 ring parent PAHs are: (1) these PAHs contribute insignificantly to the pore water TU, and (2) these PAHs exhibit extremely low saturation solubilities that will make the detection of these compounds difficult in pore water. This method can achieve the required detection limits, which range from approximately 0.01 µg/L, for high molecular weight PAHs, to approximately 3 µg/L for low molecular weight PAHs.1.4 The test method may also be applied to the determination of additional PAH compounds (for example, 5- and 6-ring PAHs as described in Hawthorne et al.).4 However, it is the responsibility of the user of this standard to establish the validity of the test method for the determination of PAHs other than those referenced in 1.1 and Table 1.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, refer to Section 9.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

5.1 Susceptibility to delamination is one of the major design concerns for many advanced laminated composite structures. Knowledge of a laminated composite material's resistance to interlaminar fracture is useful for product development and material selection. Furthermore, a measurement of the mode I interlaminar fracture toughness that is independent of specimen geometry or method of force introduction is useful for establishing design allowables used in damage tolerance analyses of composite structures. Knowledge of both the non-precracked and precracked toughness allows the appropriate value to be used for the application of interest.5.2 This test method can serve the following purposes:5.2.1 To establish quantitatively the effect of fiber surface treatment, local variations in fiber volume fraction, and processing and environmental variables on GIc of a particular composite material;5.2.2 To compare quantitatively the relative values of GIc for composite materials with different constituents;5.2.3 To compare quantitatively the values of GIc obtained from different batches of a specific composite material, for example, to use as a material screening criterion or to develop a design allowable; and5.2.4 To develop delamination failure criteria for composite damage tolerance and durability analyses.1.1 This test method describes the determination of the opening mode-I interlaminar fracture toughness, GIc, of unidirectional fiber-reinforced polymer matrix composite laminates using the double cantilever beam (DCB) specimen (Fig. 1).FIG. 1 Double Cantilever Beam Specimen1.2 This test method is limited to use with composites consisting of unidirectional carbon-fiber and glass-fiber-reinforced laminates with brittle or tough single-phase polymer matrices. This limited scope reflects the experience gained in round-robin testing. This test method may prove useful for other types and classes of composite materials; however, certain interferences have been noted (see 6.6).1.3 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3.1 Within the text, the inch-pound units are shown in brackets.1.4 This standard may involve hazardous materials, operations, and equipment.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

6.1 Methods A or B are useful in testing hermetically-sealed devices with internal volumes. Maximum acceptable leak rates have been established for microelectronic devices to assure performance characteristics will not be affected by in-leakage of air, water vapor or other contaminants over the projected life expected. Care must be taken to control the bombing pressure, bombing time and dwell time after bombing or the results can vary substantially.1.1 This practice2 covers procedures for testing devices that are sealed prior to testing, such as semiconductors, hermetically enclosed relays, pyrotechnic devices, etc., for leakage through the walls of the enclosure. They may be used with various degrees of sensitivity (depending on the internal volume, the strength of the enclosure, the time available for preparation of test, and on the sorption characteristics of the enclosure material for helium). In general practice the sensitivity limits are from 10−10 to 10−6 Pa m3/s (10−9 standard cm3/s to 10−5 standard cm3/s at 0°C) for helium, although these limits may be exceeded by several decades in either direction in some circumstances.1.2 Two test methods are described:1.2.1 Test Method A—Test part preparation by bombing.1.2.2 Test Method B—Test part preparation by prefilling.1.3 Units—The values stated in either SI or std-cc/sec units are to be regarded separately as standard. The values stated in each system may not be exact equivalents: therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

6.1 Test Method A is the most frequently used in leak testing components which are structurally capable of being evacuated to pressures of 0.1 Pa (approximately 10−3 torr). Testing of small components can be correlated to calibrated leaks, and the actual leak rate can be measured or acceptance can be based on a maximum allowable leak. For most production needs acceptance is based on acceptance of parts leaking less than an established standard which will ensure safe performance over the projected life of the component. Care must be exercised to ensure that large systems are calibrated with reference leak at a representative place on the test volume. Leak rates are determined by calculating the net gain or loss through a leak in the test part that would cause failure during the expected life of the device.6.2 Test Method B is used for testing vacuum systems either as a step in the final test of a new system or as a maintenance practice on equipment used for manufacturing, environmental test or for conditioning parts. As the volume tends to be large, a check of the response time as well as system sensitivity should be made. Volume of the system in liters divided by the speed of the vacuum pump in L/s will give the response time to reach 63 % of the total signal. Response times in excess of a few seconds makes leak detection difficult.6.3 Test Method C is to be used only when there is no convenient method of connecting the leak detector to the outlet of the high vacuum pump. If a helium leak detector is used and the high vacuum pump is an ion pump or cryopump, leak testing is best accomplished during the roughing cycle as these pumps leave a relatively high percentage of helium in the high vacuum chamber. This will obscure all but large leaks, and the trace gas will quickly saturate the pumps.1.1 This practice covers procedures for testing and locating the sources of gas leaking at the rate of 1 × 10 −8 Pa m3/s (1 × 10−9 Std cm 3/s)3 or greater. The test may be conducted on any object to be tested that can be evacuated and to the other side of which helium or other tracer gas may be applied.1.2 Three test methods are described:1.2.1 Test Method A—For the object under test capable of being evacuated, but having no inherent pumping capability.1.2.2 Test Method B—For the object under test with integral pumping capability.1.2.3 Test Method C—For the object under test as in Test Method B, in which the vacuum pumps of the object under test replace those normally used in the leak detector.1.3 Units—The values stated in either SI or std-cc/sec units are to be regarded separately as standard. The values stated in each system may not be exact equivalents: therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

6.1 Test Method A is frequently used to test large systems and complex piping installations that can be filled with a trace gas. Helium is normally used. The test method is used to locate leaks but cannot be used to quantify except for approximation. Care must be taken to provide sufficient ventilation to prevent increasing the helium background at the test site. Results are limited by the helium background and the percentage of the leaking trace gas captured by the probe.6.2 Test Method B is used to increase the concentration of trace gas coming through the leak by capturing it within an enclosure until the signal above the helium background can be detected. By introducing a calibrated leak into the same volume for a recorded time interval, leak rates can be measured.1.1 This practice covers procedures for testing and locating the sources of gas leaking at the rate of 1 × 10 −7 Pa m3/s (1 × 10−8 Std cm3/s)3 or greater. The test may be conducted on any device or component across which a pressure differential of helium or other suitable tracer gas may be created, and on which the effluent side of the leak to be tested is accessible for probing with the mass spectrometer sampling probe.1.2 Two test methods are described:1.2.1 Test Method A—Direct probing, and1.2.2 Test Method B—Accumulation.1.3 Units—The values stated in either SI or std-cc/sec units are to be regarded separately as standard. The values stated in each system may not be exact equivalents: therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏
47 条记录,每页 15 条,当前第 1 / 4 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页