微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 689元 / 折扣价: 586 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

定价: 605元 / 折扣价: 515 加购物车

在线阅读 收 藏

定价: 605元 / 折扣价: 515 加购物车

在线阅读 收 藏

定价: 605元 / 折扣价: 515 加购物车

在线阅读 收 藏

5.1 The significance of this test is to determine the thermoplastic pavement marking material’s resistance to impact over a simulated pavement substrate, under laboratory conditions, and is expressed as pass/fail or numerically. The test result can be used as a quality test or to differentiate marking materials.5.2 Anyone attempting to perform this test should initially review Test Methods D5420 and D2794, specifically the equipment setup.5.3 Sample preparation and equipment set-up should be followed precisely to minimize variability in the test result.1.1 This test method covers the sample preparation over a road-type substrate and test methodology of thermoplastic pavement marking materials similar to the “Gardner Impact” method as listed in Test Method D5420.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Different combinations of varnishes and film-insulated magnet wire behave differently when exposed to elevated temperatures. This includes different varnishes tested with the same film-insulated magnet wire and a single varnish tested with different film-insulated magnet wire.5.2 This test method is used to determine the effect on the electrical properties of a varnish applied to film-insulated magnet wire when the combination is exposed to prescribed elevated temperatures.1.1 This test method covers the determination of the thermal endurance characteristics of electrical insulating varnishes and film-insulated magnet wire in combination.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: This test method is equivalent to IEC 60172.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers the requirements for multilayer coatings of autocatalytic nickel-phosphorus over autocatalytic copper intended for electromagnetic interference or electrostatic discharge shielding to parts fabricated from either polymeric or metallic substrates or parts. Coatings are classified into four types based on thickness and testing requirements, and into two grades based on alloy composition, specifically phosphorus. Surfaces shall be prepared by cleaning it of surface contaminants, conditioning, and activation; identifying of base material suitability; and mechanical roughening. Coatings shouldl be inspected for process qualification, appearance, blisters, unplated areas, adhesion, electrical continuity, and DC resistance. Coatings should also be tested for thickness, which may be performed either by Coulometric, X-ray, or Beta backscatter methods. The requirements for process qualification shall include coating composition, electrical integrity, adhesion, thermal shock resistance, thermal cycling, and shielding effectiveness.1.1 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 This test method covers measuring the thickness of the coating over fiber backing or reinforcing fabric.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.3 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The results of the combined deformation and tape test are related to the ability of the coated metal to withstand stamping in factory applications.5.2 This test can be used to determine or control the manufacturing process or for coatings development work to improve the product.5.3 It should be recognized that variability in the results persists due to the test conditions and forming machine variations.1.1 This test method covers the evaluation of the formability and adhesion of factory applied thin film organic coatings on steel having coating thicknesses of 2.5 to 10 microns (0.10 to 0.40 mils) typical of those used in the coil coating industry.1.2 The degree of oil removal prior to forming, the techniques of taping, and differences in adhesive strength of the tape can affect the adhesion rating.1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For a specific hazard statement, see Section 7.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 618元 / 折扣价: 526 加购物车

在线阅读 收 藏

5.1 The loss of volatile materials from greases and oils can adversely affect the original performance characteristics of a lubricant and, therefore, could be a significant factor in evaluating a lubricant for a specific use. Such volatiles can also be considered contaminants in the environment in which the lubricant is to be used. Correlation between results from this test method and service performance has not been established.5.2 The test method can be used at any specified temperature between 93 °C and 316 °C (200 °F and 600 °F) that may be agreed upon by the user of the method. (Warning—This test method should not be used at temperatures which exceed the flash point of the base oil of the grease.)NOTE 1: The specified flow of air, 2.58 g/min ± 0.02 g/min, (2 L/min at standard temperature and pressure), assumes dry air. It is not known that the original work involved dry air but it has since been shown that this can be a factor in reproducibility and should be addressed. Air with a dew point of less than 10 °C at standard temperature and pressure will be satisfactory.1.1 This test method covers the determination of evaporation loss of lubricating greases at temperatures between 93 °C and 316 °C (200 °F and 600 °F). This test method is intended to augment Test Method D972, which is limited to 149 °C (300 °F).1.2 The values stated in SI units are to be regarded as the standard. The values in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific safety information, see 5.2.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This practice applies to materials manufactured in accordance with Specification C1729 (aluminum jacketing) or Specification C1767 (stainless steel jacketing). This standard is intended to provide a basic practice for installing these types of materials. Refer to Specifications C1729 and C1767 for information on the differences between aluminum and stainless steel jacketing and where each is considered for use.5.2 This practice is not intended to cover all aspects associated with installation for all applications, including factory and field fabricated pipe fitting covers.NOTE 1: Consult the National Commercial & Industrial Insulation Standards (MICA), Guide C1696, the product manufacturer, and/or project specifications for additional recommendations.5.3 Metal jacketing is typically used on insulated piping located outdoors, including, but not limited to, process areas and rooftops. Metal jacketing is used indoors where greater resistance to physical damage is required, for appearance, for improved fire performance, or as otherwise preferred. Metal jacketing used outdoors serves the same functions as indoors and also protects the insulation system from weather.5.4 Metal jacketing is used over all types of pipe insulation materials.1.1 This practice covers recommended installation techniques for aluminum and stainless steel jacketing for thermal and acoustic pipe insulation operating at either above or below ambient temperatures and in both indoor and outdoor locations. This practice applies to materials manufactured in accordance with Specification C1729 (aluminum jacketing) or Specification C1767 (stainless steel jacketing). It does not address insulation jacketing made from other materials such as mastics, fiber-reinforced plastic, laminate jacketing, PVC, or rubberized or modified asphalt jacketing, nor does it cover the details of thermal or acoustical insulation systems.1.2 The purpose of this practice is to optimize the performance and longevity of installed metal jacketing and to minimize water intrusion through the metal jacketing system. This document is limited to installation procedures for metal jacketing over pipe insulation up to a pipe size of 48 in. NPS and does not encompass system design. This practice does not cover the installation of metal jacketing on rectangular ducts or around valves and gauges. It excludes the installation of spiral jacketing on cylindrical insulated ducts but is applicable to metal jacketing on cylindrical insulated ducts installed similarly to pipe insulation jacketing. Guide C1423 provides guidance in selecting jacketing materials and their safe use.1.3 For the purposes of this practice, it is assumed that the aluminum or stainless steel jacketing is of the correct size necessary to cover the thermal insulation system on the pipe or rigid tubing while achieving the longitudinal overlaps specified in 8.2.2 and 8.3.2. The size of the aluminum or stainless steel jacket necessary to achieve this specified longitudinal overlap closure is a complex topic for which the detailed requirements are outside the scope of this practice. Achieving this fit is very important to the performance of the total insulation system. See Appendix X1 for general information and recommendations regarding this closure of aluminum and stainless steel jacketing installed over thermal pipe and rigid tubing insulation.1.4 The intrusion of water or water vapor into an insulation system will, in some cases, cause undesirable results such as corrosion under insulation, loss of insulating ability, and physical damage to the insulation system. Minimizing the movement of water through the metal jacketing system is only one of the important factors in helping maintain good long-term performance of the total insulation system. There are many other important factors including proper performance and installation of the insulation, vapor retarder, and insulation joint sealant. Optimum long-term insulation system performance is only achieved by carefully considering all aspects of insulation system design and how these relate to the intended application (hot, cold, cryogenic, severe environment, etc.). This practice only addresses installation of metal jacketing so total insulation system design is outside of its scope.1.5 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
43 条记录,每页 15 条,当前第 1 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页