微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is intended for application in the semiconductor industry for evaluating the purity of materials (for example, sputtering targets, evaporation sources) used in thin film metallization processes. This test method may be useful in additional applications, not envisioned by the responsible technical committee, as agreed upon between the parties concerned.5.2 This test method is intended for use by GDMS analysts in various laboratories for unifying the protocol and parameters for determining trace impurities in pure titanium. The objective is to improve laboratory to laboratory agreement of analysis data. This test method is also directed to the users of GDMS analyses as an aid to understanding the determination method, and the significance and reliability of reported GDMS data.5.3 For most metallic species the detection limit for routine analysis is on the order of 0.01 weight ppm. With special precautions detection limits to sub-ppb levels are possible.5.4 This test method may be used as a referee method for producers and users of electronic-grade titanium materials.1.1 This test method covers the determination of concentrations of trace metallic impurities in high purity titanium.1.2 This test method pertains to analysis by magnetic-sector glow discharge mass spectrometer (GDMS).1.3 The titanium matrix must be 99.9 weight % (3N-grade) pure, or purer, with respect to metallic impurities. There must be no major alloy constituent, for example, aluminum or iron, greater than 1000 weight ppm in concentration.1.4 This test method does not include all the information needed to complete GDMS analyses. Sophisticated computer-controlled laboratory equipment skillfully used by an experienced operator is required to achieve the required sensitivity. This test method does cover the particular factors (for example, specimen preparation, setting of relative sensitivity factors, determination of sensitivity limits, etc.) known by the responsible technical committee to effect the reliability of high purity titanium analyses.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

This test method uses a high-resolution gamma-ray spectrometer as a basis for measuring the gamma-ray emission rate of 137Cs-137mBa in a dilute nitric acid solution containing 10 mg/L of cesium carrier. No chemical separation of the cesium from the dissolved-fuel solution is required. The principal steps consist of diluting a weighed aliquot of the dissolved-fuel solution with a known mass of 1 M nitric acid (HNO3) and measuring the 662 keV gamma-ray count rate from the sample, then measuring the 662 keV gamma-ray count rate from a standard source that has the same physical form and counting geometry as the sample.The amount of fuel sample required for the analysis is small. For a sample containing 0.1 g of fuel irradiated to one atom percent fission, a net count rate of approximately 105 counts per second will be observed for a counting geometry that yields a full-energy peak efficiency fraction of 1 × 10-3. The advantage of this small amount of sample is that the concentration of fuel material can be kept at levels well below 1 g/L, which results in negligible self-absorption in the sample aliquot and a small radiation hazard to the analyst.1.1 This test method covers the determination of the number of atoms of 137Cs in aqueous solutions of irradiated uranium and plutonium nuclear fuel. When combined with a method for determining the initial number of fissile atoms in the fuel, the results of this analysis allows atom percent fission (burn-up) to be calculated (1). The determination of atom percent fission, uranium and plutonium concentrations, and isotopic abundances are covered in Test Methods E 267 and E 321.1.2 137Cs is not suitable as a fission monitor for samples that may have lost cesium during reactor operation. For example, a large temperature gradient enhances 137Cs migration from the fuel region to cooler regions such as the radial fuel-clad gap, or, to a lesser extent, towards the axial fuel end.1.3 A nonuniform 137Cs distribution should alert the analyst to the potential loss of the fission product nuclide. The 137Cs distribution may be ascertained by an axial gamma-ray scan of the fuel element to be assayed. In a mixed-oxide fuel, comparison of the 137Cs distribution with the distribution of nonmigrating fission-product nuclides such as 95Zr or 144Ce would indicate the relative degree of 137Cs migration.1.4 The values stated in SI units are to be regarded as standard. No other unites of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 Assessment of the spectrometer resolution and instrument line shape (ILS) function of a Raman spectrometer is important for intercomparability of spectra obtained among widely varying spectrometer systems, if spectra are to be transferred among systems, if various sampling accessories are to be used, or if the spectrometer can be operated at more than one laser excitation wavelength.4.2 Low-pressure discharge lamps (pen lamps such as mercury, argon, or neon) provide a low-cost means to provide both resolution and wave number calibration for a variety of Raman systems over an extended wavelength range.4.3 There are several disadvantages in the use of emission lines for this purpose, however.4.3.1 First, it may be difficult to align the lamps properly with the sample position leading to distortion of the line, especially if the entrance slit of the spectrometer is underfilled or not symmetrically illuminated.4.3.2 Second, many of the emission sources have highly dense spectra that may complicate both resolution and wave number calibration, especially on low-resolution systems.4.3.3 Third, a significant contributor to line broadening of Raman spectral features may be the excitation laser line width itself, a component that is not assessed when evaluating the spectrometer resolution with pen lamps.4.3.4 An alternative would use a Raman active compound in place of the emission source. This compound should be chemically inert, stable, and safe and ideally should provide Raman bands that are evenly distributed from 0 cm-1 (Raman shift) to the C-H stretching region 3000 cm-1 and above. These Raman bands should be of varying bandwidth.4.4 To date, no such ideal sample has been identified; however carbon tetrachloride (see Practice E1683) and naphthalene (see Guide E1840) have been used previously for both resolution and Raman shift calibration.4.5 The use of calcite to assess the resolution of a Raman system will be addressed in this guide. Calcite is a naturally occurring mineral that possesses many of the desired optical properties for a Raman resolution standard and is inexpensive, safe, and readily available.4.6 The spectral bandwidth of dispersive Raman spectrometers is determined primarily by the focal length of the spectrometer, the dispersion of the grating, and the slit width. Field portable systems typically operate with fixed slits and gratings and thus operate with a fixed spectral bandwidth, while in many laboratory systems the slit widths and gratings are variable. The spectral bandwidth of Fourier-Transform (FT)-Raman systems is continuously variable by altering the optical path difference of the interferometer and furthermore is capable of obtaining much lower spectral bandwidth than most practical dispersive systems. Therefore, data obtained of a narrow Raman band on a FT-Raman system can be used to determine the resolution of a dispersive Raman system. A calibration curve of the full width at half height (FWHH) for the 1085-cm-1 band of calcite as a function of spectral resolution has been reported for this purpose.4 Measurement of this calcite band on a test dispersive instrument enables an estimation of the spectrometer resolution.4.7 This guide will describe the use of calcite and pen lamps for the evaluation of Raman spectrometer resolution for dispersive (grating based) Raman systems operating with a 785 nm laser wavelength.1.1 This guide is designed for routine testing and assessment of the spectral resolution of Raman spectrometers using either a low-pressure arc lamp emission lines or a calibrated Raman band of calcite.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 Because of the significant dangers associated with the use of lasers, ANSI Z136.1 shall be followed in conjunction with this practice.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Knowledge of the specified individual component composition (speciation) of gasoline fuels and blending stocks is useful for refinery quality control and product specification. Process control and product specification compliance for many individual hydrocarbons may be determined through the use of this test method.1.1 This test method covers the determination of individual hydrocarbon components of spark-ignition engine fuels and their mixtures containing oxygenate blends (MTBE, ETBE, ethanol, and so forth) with boiling ranges up to 225 °C. Other light liquid hydrocarbon mixtures typically encountered in petroleum refining operations, such as blending stocks (naphthas, reformates, alkylates, and so forth) may also be analyzed; however, statistical data was obtained only with blended spark-ignition engine fuels.1.2 Based on the cooperative study results, individual component concentrations and precision are determined in the range of 0.01 % mass to approximately 30 % mass. The procedure may be applicable to higher and lower concentrations for the individual components; however, the user must verify the accuracy if the procedure is used for components with concentrations outside the specified ranges.1.3 The test method also determines methanol, ethanol, t-butanol, methyl t-butyl ether (MTBE), ethyl t-butyl ether (ETBE), t-amyl methyl ether (TAME) in spark ignition engine fuels in the concentration range of 1 % mass to 30 % mass. However, the cooperative study data provided sufficient statistical data for MTBE only.1.4 Although a majority of the individual hydrocarbons present are determined, some co-elution of compounds is encountered. If this test method is utilized to estimate bulk hydrocarbon group-type composition (PONA) the user of such data should be cautioned that some error will be encountered due to co-elution and a lack of identification of all components present. Samples containing significant amounts of olefinic or naphthenic (for example, virgin naphthas), or both, constituents above n-octane may reflect significant errors in PONA type groupings. Based on the gasoline samples in the interlaboratory cooperative study, this procedure is applicable to samples containing less than 25 % mass of olefins. However, some interfering coelution with the olefins above C7 is possible, particularly if blending components or their higher boiling cuts such as those derived from fluid catalytic cracking (FCC) are analyzed, and the total olefin content may not be accurate. Caution should also be exercised when analyzing olefin-free samples using this test method as some of the paraffins may be reported as olefins since analysis is based purely on retention times of the eluting components.1.4.1 Total olefins in the samples may be obtained or confirmed, or both, if necessary, by Test Method D1319 (percent volume) or other test methods, such as those based on multidimensional PONA type of instruments (Test Method D6839).1.5 If water is or is suspected of being present, its concentration may be determined, if desired, by the use of Test Method D1744, or equivalent. Other compounds containing oxygen, sulfur, nitrogen, and so forth, may also be present, and may co-elute with the hydrocarbons. If determination of these specific compounds is required, it is recommended that test methods for these specific materials be used, such as Test Methods D4815 and D5599 for oxygenates, and D5623 for sulfur compounds, or equivalent.1.6 Annex A1 of this test method compares results of the test procedure with other test methods for selected components, including olefins, and several group types for several interlaboratory cooperative study samples. Although benzene, toluene, and several oxygenates are determined, when doubtful as to the analytical results of these components, confirmatory analyses can be obtained by using specific test methods.1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 918元 / 折扣价: 781 加购物车

在线阅读 收 藏

5.1 Knowledge of the individual component composition (speciation) of gasoline fuels and blending stocks is useful for refinery quality control and product specification. Process control and product specification compliance for many individual hydrocarbons can be determined through the use of this test method.5.2 This test method is adopted from earlier development and enhancement.4,5,6,7 The chromatographic operating conditions and column tuning process, included in this test method, were developed to provide and enhance the separation and subsequent determination of many individual components not obtained with previous single-column analyses. The column temperature program profile is selected to afford the maximum resolution of possible co-eluting components, especially where these are of two different compound types (for example, a paraffin and a naphthene).5.3 Although a majority of the individual hydrocarbons present in petroleum distillates are determined, some co-elution of compounds is encountered. If this test method is utilized to determine bulk hydrocarbon group-type composition (PONA), the user of such data should be cautioned that some error will be encountered due to co-elution and a lack of identification of all components present. Samples containing significant amounts of olefinic or naphthenic, or both, constituents above octane may reflect significant errors in PONA-type groupings.5.4 If water is or is suspected of being present, its concentration is determined by the use of Test Method D1744. Other compounds containing oxygen, sulfur, nitrogen, and so forth may also be present, and may co-elute with the hydrocarbons. When known co-elution exists, these are noted in the test method data tables. If determination of these specific compounds is required, it is recommended that test methods for these specific materials be used, such as Test Method D4815 and D5599 for oxygenates, Test Method D5580 for aromatics, and Test Method D5623 for sulfur compounds.1.1 This test method covers the determination of individual hydrocarbon components of spark-ignition engine fuels and their mixtures containing oxygenate blends (MTBE, ETBE, ethanol, and so forth) with boiling ranges up to 225 °C. Other light liquid hydrocarbon mixtures typically encountered in petroleum refining operations, such as blending stocks (naphthas, reformates, alkylates, and so forth) may also be analyzed; however, statistical data was obtained only with blended spark-ignition engine fuels.1.2 Based on the cooperative study results, individual component concentrations and precision are determined in the range from 0.01 % to approximately 30 % by mass. The test method may be applicable to higher and lower concentrations for the individual components; however, the user must verify the accuracy if the test method is used for components with concentrations outside the specified ranges.1.3 This test method also determines methanol, ethanol, t-butanol, methyl t-butyl ether (MTBE), ethyl t-butyl ether (ETBE), and t-amyl methyl ether (TAME) in spark ignition engine fuels in the concentration range from 1 % to 30 % by mass. However, the cooperative study data provided insufficient statistical data for obtaining a precision statement for these compounds.1.4 Although a majority of the individual hydrocarbons present are determined, some co-elution of compounds is encountered. If this test method is utilized to estimate bulk hydrocarbon group-type composition (PONA), the user of such data should be cautioned that some error will be encountered due to co-elution and a lack of identification of all components present. Samples containing significant amounts of naphthenic (for example, virgin naphthas) constituents above n-octane may reflect significant errors in PONA-type groupings. Based on the gasoline samples in the interlaboratory cooperative study, this test method is applicable to samples containing less than 25 % by mass of olefins. However, some interfering co-elution with the olefins above C7 is possible, particularly if blending components or their higher boiling cuts such as those derived from fluid catalytic cracking (FCC) are analyzed, and the total olefin content may not be accurate. Annex A1 of this test method compares results of the test method with other test methods for selected components, including olefins, and several group types for several interlaboratory cooperative study samples. Although benzene, toulene, and several oxygenates are determined, when doubtful as to the analytical results of these components, confirmatory analyses can be obtained by using the specific test methods listed in the reference section.1.4.1 Total olefins in the samples may be obtained or confirmed, or both, if necessary, by Test Method D1319 (percent by volume) or other test methods, such as those based on multidimentional PONA-type of instruments.1.5 If water is or is suspected of being present, its concentration may be determined, if desired, by the use of Test Method D1744 or equivalent. Other compounds containing oxygen, sulfur, nitrogen, and so forth, may also be present, and may co-elute with the hydrocarbons. If determination of these specific compounds is required, it is recommended that test methods for these specific materials be used, such as Test Methods D4815 and D5599 for oxygenates, and Test Method D5623 for sulfur compounds, or equivalent.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 983元 / 折扣价: 836 加购物车

在线阅读 收 藏

5.1 Knowledge of the individual component composition (speciation) of gasoline fuels and blending stocks is useful for refinery quality control and product specification. Process control and product specification compliance for many individual hydrocarbons may be determined through the use of this test method.1.1 This test method covers the determination of individual hydrocarbon components of spark-ignition engine fuels with boiling ranges up to 225 °C. Other light liquid hydrocarbon mixtures typically encountered in petroleum refining operations, such as, blending stocks (naphthas, reformates, alkylates, and so forth) may also be analyzed; however, statistical data was obtained only with blended spark-ignition engine fuels. The tables in Annex A1 enumerate the components reported. Component concentrations are determined in the range from 0.10 % to 15 % by mass. The procedure may be applicable to higher and lower concentrations for the individual components; however, the user must verify the accuracy if the procedures are used for components with concentrations outside the specified ranges.1.2 This test method is applicable also to spark-ignition engine fuel blends containing oxygenated components. However, in this case, the oxygenate content must be determined by Test Methods D5599 or D4815.1.3 Benzene co-elutes with 1-methylcyclopentene. Benzene content must be determined by Test Method D3606 or D5580.1.4 Toluene co-elutes with 2,3,3-trimethylpentane. Toluene content must be determined by Test Method D3606 or D5580.1.5 Although a majority of the individual hydrocarbons present are determined, some co-elution of compounds is encountered. If this procedure is utilized to estimate bulk hydrocarbon group-type composition (PONA) the user of such data should be cautioned that error may be encountered due to co-elution and a lack of identification of all components present. Samples containing significant amounts of naphthenic (for example, virgin naphthas) constituents above n-octane may reflect significant errors in PONA type groupings. Based on the interlaboratory cooperative study, this procedure is applicable to samples having concentrations of olefins less than 20 % by mass. However, significant interfering coelution with the olefins above C7 is possible, particularly if blending components or their higher boiling cuts such as those derived from fluid catalytic cracking (FCC) are analyzed, and the total olefin content may not be accurate. Many of the olefins in spark ignition fuels are at a concentration below 0.10 %; they are not reported by this test method and may bias the total olefin results low.1.5.1 Total olefins in the samples may be obtained or confirmed, or both, by Test Method D1319 (volume %) or other test methods, such as those based on multidimensional PONA type of instruments.1.6 If water is or is suspected of being present, its concentration may be determined, if desired, by the use of Test Method D1744. Other compounds containing sulfur, nitrogen, and so forth, may also be present, and may co-elute with the hydrocarbons. If determination of these specific compounds is required, it is recommended that test methods for these specific materials be used, such as Test Method D5623 for sulfur compounds.1.7 The values stated in SI units are to be regarded as the standard. The values given in parentheses are provided for information only.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

4.1 This practice is useful for assessing the source for an oil spill. Other less complex analytical procedures (Test Methods D3328, D3414, D3650, and D5037) may provide all of the necessary information for ascertaining an oil spill source; however, the use of a more complex analytical strategy may be necessary in certain difficult cases, particularly for significantly weathered oils. This practice provides the user with a means to this end.4.1.1 This practice presumes that a “screening” of possible suspect sources has already occurred using less intensive techniques. As a result, this practice focuses directly on the generation of data using preselected targeted compound classes. These targets are both petrogenic and pyrogenic and can constitute both major and minor fractions of petroleum oils; they were chosen in order to develop a practice that is universally applicable to petroleum oil identification in general and is also easy to handle and apply. This practice can accommodate light oils and cracked products (exclusive of gasoline) on the one hand, as well as residual oils on the other.4.1.2 This practice provides analytical characterizations of petroleum oils for comparison purposes. Certain classes of source-specific chemical compounds are targeted in this qualitative comparison; these target compounds are both unique descriptors of an oil and chemically resistant to environmental degradation. Spilled oil can be assessed in this way as being similar or different from potential source samples by the direct visual comparison of specific extracted ion chromatograms (EICs). In addition, other, more weathering-sensitive chemical compound classes can also be examined in order to crudely assess the degree of weathering undergone by an oil spill sample.4.2 This practice simply provides a means of making qualitative comparisons between petroleum samples; quantitation of the various chemical components is not addressed.1.1 This practice covers the use of gas chromatography and mass spectrometry to analyze and compare petroleum oil spills and suspected sources.1.2 The probable source for a spill can be ascertained by the examination of certain unique compound classes that also demonstrate the most weathering stability. To a greater or lesser degree, certain chemical classes can be anticipated to chemically alter in proportion to the weathering exposure time and severity, and subsequent analytical changes can be predicted. This practice recommends various classes to be analyzed and also provides a guide to expected weathering-induced analytical changes.1.3 This practice is applicable for moderately to severely degraded petroleum oils in the distillate range from diesel through Bunker C; it is also applicable for all crude oils with comparable distillation ranges. This practice may have limited applicability for some kerosenes, but it is not useful for gasolines.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
49 条记录,每页 15 条,当前第 1 / 4 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页