微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 Oxidation induction time, as determined under the conditions of this test method, can be used as an indication of oxidation stability.3 This test method can be used for research and development, quality control and specification purposes. However, no correlation has been determined between the results of this test method and service performance.1.1 This test method covers the determination of oxidation induction time of lubricating greases subjected to oxygen at 3.5 MPa (500 psig) and temperatures between 155 °C and 210 °C.1.2 Warning—The original data published in Research Report RR:D02-1314, was not analyzed in accordance the current D2PP. It also used instruments which are no longer manufactured and in a check of currently used instruments, none of the original instruments were still in use. The new precision of this test method is still to be established.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This procedure describes a rapid and sensitive method for estimating the stability reserve of an oil. The stability reserve is estimated in terms of a separability number, where a low value of the separability number indicates that there is a stability reserve within the oil. When the separability number is between 0 to 5, the oil can be considered to have a high stability reserve and asphaltenes are not likely to flocculate. If the separability number is between 5 to 10, the stability reserve in the oil will be much lower. However, asphaltenes are, in this case, not likely to flocculate as long as the oil is not exposed to any worse conditions, such as storing, aging, and heating. If the separability number is above 10, the stability reserve of the oil is very low and asphaltenes will easily flocculate, or have already started to flocculate.5.2 This test method can be used by refiners and users of oils, for which this test method is applicable, to estimate the stability reserves of their oils. Hence, this test method can be used by refineries to control and optimize their refinery processes. Consumers of oils can use this test method to estimate the stability reserve of their oils before, during, and after storage.FIG. 1 Schematic Representation of a Typical Measurement Using an Optical Scanning Device5.3 This test method is not intended for predicting whether oils are compatible before mixing, but can be used for determining the separability number of already blended oils. However, oils that show a low separability number are more likely to be compatible with other oils than are oils with high separability numbers.1.1 This test method covers the quantitative measurement, either in the laboratory or in the field, of how easily asphaltene-containing heavy fuel oils diluted in toluene phase separate upon addition of heptane. This is measured as a separability number (%) by the use of an optical scanning device.1.2 The test method is limited to asphaltene-containing heavy fuel oils. ASTM specification fuels that generally fall within the scope of this test method are Specification D396, Grade Nos. 4, 5, and 6, Specification D975, Grade No. 4-D, and Specification D2880, Grade Nos. 3-GT and 4-GT. Refinery fractions from which such blended fuels are made also fall within the scope of this test method.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Materials undergo an increase in molecular mobility at the glass transition seen as a sigmoidal step increase in the heat capacity. This mobility increase may lead to kinetic events such as enthalpic recovery, chemical reaction or crystallization at temperatures near the glass transition. The heat flow associated with the kinetic events may interfere with the determination of the glass transition.5.2 The glass transition is observed in differential scanning calorimetry as a sigmoidal or step change in specific heat capacity.5.3 MTDSC provides a test method for the separation of the heat flow due to heat capacity and that associated with kinetic events making it possible to determine the glass transition in the presence of interfering kinetic event.5.4 These test methods are useful in research and development, quality assurance and control and specification acceptance.5.5 Other methods for assigning the glass transition temperature include differential scanning calorimetry (Test Method E1356), thermomechanical analysis (Test Method E1545) and dynamic mechanical analysis (Test Method E1640).1.1 These test methods describe the assignment of the glass transition temperature of materials using modulated temperature differential scanning calorimetry (MTDSC) over the temperature range from –120 °C to +600 °C. The temperature range may be extended depending upon the instrumentation used.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Fixed-cell differential scanning calorimeters are used to determine the transition temperatures and energetics of materials in solution. For this information to be accepted with confidence in an absolute sense, temperature and heat calibration of the apparatus or comparison of the resulting data to that of known standard materials is required.5.2 This practice is useful in calibrating the temperature and heat flow axes of fixed-cell differential scanning calorimeters.1.1 This practice covers the calibration of fixed-cell differential scanning calorimeters over the temperature range from –10 °C to +120 °C.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 7.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

6.1 This test method is useful for research and development, quality assurance, regulatory compliance and specification-based acceptance.6.2 The kinetic parameters determined by this method may be used to calculate thermal hazard figures-of-merit according to Practice E1231.1.1 This test method describes the determination of the kinetic parameters of Arrhenius activation energy and pre-exponential factor using the Kissinger variable heating rate iso-conversion method (1, 2)2 and activation energy and reaction order by the Farjas method (3) for thermally unstable materials. The test method is applicable to the temperature range from 300 K to 900 K (27 °C to 627 °C).1.2 Both nth order and accelerating reactions are addressed by this method over the range of 0.5 < n < 4 and 1 < p < 4 where n is the nth order reaction order and p is the Avrami reaction order (4). Reaction orders n and p are determined by the Farjas method (3).1.3 This test method uses the same experimental conditions as Test Method E698. The Flynn/Wall/Ozawa data treatment of Test Method E698 may be simultaneously applied to these experimental results.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Information concerning the reaction model aids in the selection of the appropriate method (and test method) for evaluation of kinetic parameters. nth order reaction may be treated by isoconversion methods such as Test Methods E698 and E2890. Autocatalytic reactions are treated by Test Methods E2070.5.2 This practice may be used in research, forensic analysis, trouble shooting, product evaluation, and hazard potential evaluation.1.1 This practice describes a procedure for determining the “model” of an exothermic reaction using differential scanning calorimetry. The procedure is typically performed on 1 mg to 3 mg specimen sizes over the temperature range from ambient to 600 °C.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

6.1 This test method is useful in research and development.6.2 The determination of the appropriate model for a chemical reaction or transformation and the values associated with its kinetic parameters may be used in the estimation of reaction performance at temperatures or time conditions not easily tested. This use, however, is not described in this test method.1.1 This test method describes the determination of the kinetic parameters of activation energy, Arrhenius pre-exponential factor, and reaction order using the Borchardt and Daniels2 treatment of data obtained by differential scanning calorimetry. This test method is applicable to the temperature range from 170 K to 870 K (−100 °C to 600°C).1.2 This treatment is applicable only to smooth exothermic reactions with no shoulders, discontinuous changes, or shifts in baseline. It is applicable only to reactions with reaction order n ≤ 2. It is not applicable to acceleratory reactions and, therefore, is not applicable to the determination of kinetic parameters for most thermoset curing reactions or to crystallization reactions.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Differential scanning calorimetry provides a rapid method for the determination of enthalpic changes accompanying first-order transitions of materials.5.2 This test method is useful for quality control, specification acceptance, and research.1.1 This test method describes the determination of the enthalpy (heat) of fusion (melting) and crystallization by differential scanning calorimetry (DSC).1.2 This test method is applicable to solid samples in granular form or in any fabricated shape from which an appropriate specimen can be cut, or to liquid samples that crystallize within the range of the instrument. Note, however, that the results may be affected by the form and mass of the specimen, as well as by other experimental conditions.1.3 The normal operating temperature range is from −120 to 600°C. The temperature range can be extended depending upon the instrumentation used.1.4 This test method is generally applicable to thermally stable materials with well defined endothermic or exothermic behavior.1.5 Computer or electronic based instruments, techniques, or data treatment equivalent to those in this test method may also be used.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 The enthalpy of melting and crystallization portion of ISO 11357-3 is equivalent to this standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The OIT is a qualitative assessment of the level (or degree) of stabilization of the material tested. This test has the potential to be used as a quality control measure to monitor the stabilization level in formulated resin as received from a supplier, prior to extrusion.NOTE 2: The OIT measurement is an accelerated thermal-aging test and as such can be misleading. Caution should be exercised in data interpretation since oxidation reaction kinetics are a function of temperature and the inherent properties of the additives contained in the sample. For example, OIT results are often used to select optimum resin formulations. Volatile antioxidants may generate poor OIT results even though they may perform adequately at the intended use temperature of the finished product.NOTE 3: There is no accepted sampling procedure, nor have any definitive relationships been established for comparing OIT values on field samples to those on unused products, hence the use of such values for determining life expectancy is uncertain and subjective.1.1 This test method outlines a procedure for the determination of oxidative-induction time (OIT) of polymeric materials by differential scanning calorimetry (DSC). It is applicable to polyolefin resins that are in a fully stabilized/compounded form.1.2 The values stated in SI units are to be regarded as the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific hazards information is given in Section 8.NOTE 1: This standard and ISO 11357–6 2013 address the same subject matter, but differ in technical content.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The crystallinity of UHMWPE will influence its mechanical properties, such as creep and stiffness. The reported crystallinity will depend on the integration range used to determine the heat of fusion, and the theoretical heat of fusion of 100 % crystalline polyethylene used to calculate the percent crystallinity in an unknown specimen. Differential scanning calorimetry is an effective means of accurately measuring both heat of fusion and melting temperature.5.2 This test method is useful for both process control and research.1.1 This test method discusses the measurement of the heat of fusion and the melting point of ultra-high-molecular weight polyethylene (UHMWPE), and the subsequent calculation of the percentage of crystallinity.1.2 This test method can be used for UHMWPE in powder form, consolidated form, finished product, or a used product. It can also be used for irradiated or chemically-crosslinked UHMWPE.1.3 This test method does not suggest a desired range of crystallinity or melting points for specific applications.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The TGS provides a nondestructive means of mapping the attenuation characteristics and the distribution of the radionuclide content of items on a voxel by voxel basis. Typically in a TGS analysis a vertical layer (or segment) of an item will be divided into a number of voxels. By comparison, a segmented gamma scanner (SGS) can determine matrix attenuation and radionuclide concentrations only on a segment by segment basis.5.2 It has been successfully used to quantify  238Pu, 239Pu, and 235U. SNM loadings from 0.5 g to 200 g of 239Pu (5, 6), from 1 g to 25 g of 235U (7), and from 0.1 to 1 g of 238Pu have been successfully measured. The TGS technique has also been applied to assaying radioactive waste generated by nuclear power plants (NPP). Radioactive waste from NPP is dominated by activation products (for example, 54Mn, 58Co, 60Co,  110mAg) and fission products (for example, 137Cs,  134Cs). The radionuclide activities measured in NPP waste is in the range from 3.7E+04 Bq to 1.0E+07 Bq. Some results of TGS application to non-SNM radionuclides can be found in the literature (8).5.3 The TGS technique is well suited for assaying items that have heterogeneous matrices and that contain a non-uniform radionuclide distribution.5.4 Since the analysis results are obtained on a voxel by voxel basis, the TGS technique can in many situations yield more accurate results when compared to other gamma ray techniques such as SGS.5.5 In determining the radionuclide distribution inside an item, the TGS analysis explicitly takes into account the cross talk between various vertical layers of the item.5.6 The TGS analysis technique uses a material basis set method that does not require the user to select a mass attenuation curve apriori, provided the transmission source has at least 2 gamma lines that span the energy range of interest.5.7 A commercially available TGS system consists of building blocks that can easily be configured to operate the system in the SGS mode or in a far-field geometry.5.8 The TGS provides 3-dimensional maps of gamma ray attenuation and radionuclide concentration within an item that can be used as a diagnostic tool.5.9 Item preparation is limited to avoiding large quantities of heavily attenuating materials (such as lead shielding) in order to allow sufficient transmission through the container and the matrix.1.1 This test method describes the nondestructive assay (NDA) of gamma ray emitting radionuclides inside containers using tomographic gamma scanning (TGS). High resolution gamma ray spectroscopy is used to detect and quantify the radionuclides of interest. The attenuation of an external gamma ray transmission source is used to correct the measurement of the emission gamma rays from radionuclides to arrive at a quantitative determination of the radionuclides present in the item.1.2 The TGS technique covered by the test method may be used to assay scrap or waste material in cans or drums in the 1 to 500 litre volume range. Other items may be assayed as well.1.3 The test method will cover two implementations of the TGS procedure: (1) Isotope Specific Calibration that uses standards of known radionuclide masses (or activities) to determine system response in a mass (or activity) versus corrected count rate calibration, that applies to only those specific radionuclides for which it is calibrated, and (2) Response Curve Calibration that uses gamma ray standards to determine system response as a function of gamma ray energy and thereby establishes calibration for all gamma emitting radionuclides of interest.1.4 This test method will also include a technique to extend the range of calibration above and below the extremes of the measured calibration data.1.5 The assay technique covered by the test method is applicable to a wide range of item sizes, and for a wide range of matrix attenuation. The matrix attenuation is a function of the matrix composition, photon energy, and the matrix density. The matrix types that can be assayed range from light combustibles to cemented sludge or concrete. It is particularly well suited for items that have heterogeneous matrix material and non-uniform radioisotope distributions. Measured transmission values should be available to permit valid attenuation corrections, but are not needed for all volume elements in the container, for example, if interpolation is justified.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

1.1 This guide provides information for the examination of hardened concrete using scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDX or EDS). Since the 1960s, SEM has been used for the examination of concrete and has proved to be an insightful tool for the microstructural analysis of concrete and its components. There are no standardized procedures for the SEM analysis of concrete. SEM supplements techniques of light microscopy, which are described in Practice C856/C856M, and, when applicable, techniques described in Practice C856/C856M should be consulted for SEM analysis. For further study, see the bibliography at the end of this guide.1.2 This guide is intended to provide a general introduction to the application of SEM/EDS analytical techniques for the examination and analysis of concrete. It is meant to be useful to engineers and scientists who want to study concrete and who are familiar with, but not expert in, the operation and application of SEM/EDS technology. The guide is not intended to provide explicit instructions concerning the operation of this technology or interpretation of information obtained through SEM/EDS.1.3 It is critical that petrographer or operator or both be familiar with the SEM/EDX (EDS) equipment, specimen preparation procedures, and the use of other appropriate procedures for this purpose. This guide does not discuss data interpretation. Proper data interpretation is best done by individuals knowledgeable about the significance and limitations of SEM/EDX (EDS) and the materials being evaluated.1.4 The SEM provides images that can range in scale from a low magnification (for example, 15×) to a high magnification (for example, 50 000× or greater) of concrete specimens such as fragments, polished surfaces, or powders. These images can provide information indicating compositional or topographical variations in the observed specimen. The EDX (EDS) system can be used to qualitatively or quantitatively determine the elemental composition of very small volumes intersecting the surface of the observed specimen (for example, 1-10 cubic microns) and those measured compositional determinations can be correlated with specific features observed in the SEM image. See Note 1.NOTE 1: An electronic document consisting of electron micrographs and EDX (EDS) spectra illustrating the materials, reaction products, and phenomena discussed below is available at http://netfiles.uiuc.edu/dlange/www/CML/index.html.1.5 Performance of SEM and EDX (EDS) analyses on hardened concrete specimens can, in some cases, present unique challenges not normally encountered with other materials analyzed using the same techniques.1.6 This guide can be used to assist a concrete petrographer in performing or interpreting SEM and EDX (EDS) analyses in a manner that maximizes the usefulness of these techniques in conducting petrographic examinations of concrete and other cementitious materials, such as mortar and stucco. For a more in-depth, comprehensive tutorial on scanning electron microscopy or the petrographic examination of concrete and concrete-related materials, the reader is directed to the additional publications referenced in the bibliography section of this guide.1.7 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with the use of electron microscopes, X-ray spectrometers, chemicals, and equipment used to prepare samples for electron microscopy. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
109 条记录,每页 15 条,当前第 1 / 8 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页