微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 345元 / 折扣价: 294

在线阅读 收 藏

定价: 345元 / 折扣价: 294 加购物车

在线阅读 收 藏

定价: 156元 / 折扣价: 133 加购物车

在线阅读 收 藏

5.1 Solid lubricant coatings are applied to surfaces that are exposed to heat and cold to such a degree that in many cases liquid lubricants are not practical. Adherence under these conditions is mandatory to preserve the bearing surfaces during sliding motion.1.1 This test method covers the measurement of the resistance of dry solid film lubricants to deterioration when subjected to temperature extremes.1.2 The values stated in SI units are to be regarded as the standard. The inch-pound units given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 Shipping containers and the interior packaging materials are used to protect their contents from the hazards encountered in handling, transportation, and storage. Shock is one of the more troublesome of these hazards. Free-fall drop testing, while easy to perform, often understresses the test specimen by subjecting it to drops which are not perpendicular to the dropping surface. Note 1: For example, testing has shown that non-perpendicular drops, 2° off perpendicularity, result in 8 % lower acceleration into the test specimen resulting from the impact energy dispersing in several axes.4 4.1.1 Controlled shock input by shock machines provides a convenient method for evaluating the ability of shipping containers, interior packaging materials, and contents to withstand shocks. Simulated free-fall drop testing of package systems, which have critical elements, has produced good results where the frequency of the shock pulse is at least three times that of the package system's natural frequency. 4.2 As in most mechanical shock test procedures, fixturing of the package on the shock test machine may have significant influence on the test results. Typically, packages will be firmly held on the table by securing some type of cross member(s) across the top of the package. Care should be taken that any pressure resulting from such fixturing should be minimal, particularly when the container being tested is corrugated or some other similar material. 4.2.1 In cases where low-acceleration, long-duration responses are anticipated, any fixturing can potentially influence packaged item response and can possibly alter any correlation between this test method and free-fall drop testing. Where such correlation is desired, the package can be tested without it being fixed directly to the table. Note that in such circumstances, the shipping container can vigorously rebound from the table and can, if not otherwise controlled, present a safety problem for operators. Fixing the shipping container to the shock machine table is most often recommended for safety and convenience, but accuracy and precision of this test method should not be compromised by such fixturing. Note 2: A rigid package system with a natural frequency above 83 Hz requires a shock pulse shorter than the 2-ms (nominal) duration currently available with many of today's shock machines: where: ds   =   shock pulse duration, s, fs   =   shock pulse frequency, Hz, and fp   =   package system frequency, which may be determined by Test Methods D999. Similarly, a shock machine using an input shock pulse duration of 3 ms would only be effective with package system frequencies below 56 Hz. 1.1 This test method covers the general procedures of using shock machines to replicate the effects of vertical drops of loaded shipping containers, cylindrical containers, and bags and sacks. 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 This practice is intended to provide the user with a process to obtain data on package performance when a packaged product is subjected to shock. These measures can be used to quantify or qualify a package system.4.2 Data from this practice may provide a measure of a package's ability to mitigate the various levels of shipping shock or impact hazards. These measures may be used to prescribe a mode of shipping and handling that will not induce damage to the packaged product or to define the required levels of protection that must be provided by its packaging.4.3 This practice could potentially be used in conjunction with the data derived from Test Method D3332 (Method B) for optimizing cushion design.4.4 This practice obtains data at the interface of the product and package (coupled) or element response, depending on the intent of the user (see 10.1 and 10.1.1).1.1 This practice covers methods for obtaining measured shock responses using instrumentation for an actual or simulated product package system when subjected to defined shock inputs to measure package performance.1.2 This practice establishes methods for obtaining measured shock data for use with shock and impact test methods. It is not intended as a substitute for performance testing of shipping containers and systems such as Practice D4169.1.3 This practice will address acceleration measuring techniques. Other ways of measuring shock impacts, such as high speed video, are not covered by this practice.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

3.1 This test method indicates the ability of a refractory product to withstand the stress generated by sudden changes in temperature.3.2 Because the recommended furnace temperature of this cycling test is 1200 °C (2190 °F), this test method may not indicate the ability of a refractory product to withstand cycling at higher or lower temperatures, especially if the existing morphology of the refractory product changes.3.3 This test method is useful for research and development, as well as for comparing refractory products. The precision should be considered when using this test for specification purposes.3.4 Ruggedness tests found the following variables to be rugged:Temperature +5 °CHot spacing 1/2 to 3/4 in. (12.77 to 19 mm)Cold spacing 1/2 to 3/4 in. (12.77 to 19 mm)Center versus end gripping of the barsHot hold time 10 to 15 minCold hold time 10 to 15 minOperator air speed 0 to 2 mi/h (0 to 3.2 km/h)Initially cold or heated samplesLast in, first out (LIFO); or first in, first out (FIFO) removal from the furnaceSawed or original surface as tensile face during MOR testingBar thickness 0.96 to 1.04 in. (24.5 to 26.4 mm)1.1 This test method is used for determining the strength loss or reduction in continuity, or both, of prism-shaped specimens which are cut from refractory brick or shapes and subjected to thermal cycling.1.2 The strength loss is measured by the difference in modulus of rupture (MOR) between uncycled specimens and the specimens subjected to thermal cycling.1.3 The reduction in structural continuity is estimated by the difference in sonic velocity before and after thermal cycling.1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Data obtained by these methods may be used to determine the transmitted shock cushioning characteristics of foam-in-place packaging materials. These data allow design of cushioning systems that can provide adequate and efficient use of foam for protection of goods during a distribution life-cycle.5.2 These methods, in contrast to other methods that usually test only the cushioning foam, are designed to evaluate foam-in-place cushioning materials in a manner in which the foam-in-place packaging material is used. In particular, the method includes simultaneous use of a plastic film, the foam, and the box usually used in this method of packaging. See Fig. 1.FIG. 1 Specimen Ready For Test1.1 These test methods determine the shock-absorbing characteristics of foam-in-place packaging materials.1.2 Test Method A uses a free-fall package drop test apparatus.1.3 Test Method B uses a shock-test apparatus.1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This guide establishes the minimum national standard for training in the management of shock in patients of all ages by the emergency medical technician (basic). 1.2 This guide is one of a series which together describe the minimum training standard for the emergency medical technician (basic). 1.3 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This test method is used by athletic footwear manufacturers both as a tool for development of midsole material systems and as a test of the general characteristics of the athletic footwear product (see 1.4-1.6.2 and Notes 1-6). Careful adherence to the requirements and recommendations of this test method shall provide results which can be compared between different laboratory sources.Dynamic data obtained by these procedures are indicative of the shock attenuating properties (see 1.5) of the material systems under the specific conditions selected.This test method is designed to provide force versus displacement response of materials systems for athletic footwear under essentially uniaxial compression conditions at impact rates, which are similar to that for heel strike in normal running movements.2 ,3 That is, peak forces of up to 2 kN (450 lb) in times of 10 to 20 ms.The peak or maximum values of force, pressure, displacement, and strain are dependent on the maximum energy applied to the specimen. These values are normalized to provide comparative results for a reference maximum energy applied to the specimen of 5 J.Shock attenuating characteristics are strongly dependent on specimen thickness and prior history of force application. Therefore, results should be compared only for specimens of essentially the same thickness and prior impact conditioning (see Notes 3-6). There are no currently acceptable techniques for normalizing results for specimen thickness variations.Shock attenuating values (see 1.5) determined by this test method, for materials systems of athletic footwear, may not correlate with the similar values experienced by a runners heel or foot.1.1 This test method covers the measurement of certain shock attenuating characteristics, rapid rate force-displacement relationships, of materials systems employed in the midsole of athletic footwear intended for use in normal running movements. This test method covers three different procedures for performance of the rapid rate force application: Procedure A for falling weight impact machines, Procedure B for compression force controlled machines, and Procedure C for compression displacement controlled machines.1.2 The material system response for rapid rate force application may be different for each of the three procedures of this test method.1.3 This test method is empirically based on the use of an 8.5-kg mass dropped from 50 mm (1.97 in.) to generate peak compressive forces which are comparable to that experienced by a midsole in heel strike tests for normal running movement., This requires the specimen to be rigidly supported and the energy to be delivered through a 45-mm (1.8-in.) diameter flat tup.1.4 This test method imposes an impulse to generate a rapid rate compressive force-displacement hysteresis cycle and evaluates shock attenuating characteristics of the specimen. The maximum energy applied to the specimen occurs at peak displacement and must be within 10 % of a reference value that is used to normalize the data for comparative purposes.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏
47 条记录,每页 15 条,当前第 1 / 4 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页