微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 540元 / 折扣价: 459

在线阅读 收 藏

定价: 0元 / 折扣价: 0

在线阅读 收 藏

定价: 280元 / 折扣价: 238

在线阅读 收 藏
AS 1408-1997 Sizing scheme for cooking utensils 被代替 发布日期 :  1997-05-05 实施日期 : 

定价: 260元 / 折扣价: 221 加购物车

在线阅读 收 藏

5.1 This test method is intended for use in the laboratory or in the field for evaluating the cleanliness of distillate fuels, and liquid bio fuels. It is not applicable to on or in-line applications.5.2 This test method offers advantage over traditional filtration methods in that it is a precise rapid test, and advantage over visual methods as it is not subjective.5.3 An increase in particle counts can indicate a change in the fuel condition caused by storage or transfer for example.5.4 High levels of particles can cause filter blockages and have a serious impact on the life of pumps, injectors, pistons and other moving parts. Knowledge of particle size in relation to the metallurgy can provide vital information especially if the hardness of particles is also known from other sources.5.5 This test method specifies a minimum requirement for reporting measurements in particle size bands (see A1.1.2). Some specific applications may require measurements in other particle size bands.5.6 Obtaining a representative sample and following the recommended sample and test specimen preparation procedures and timescales is particularly important with particle counting methods. (See Sections 8, 10, 14.1.4 and Note 8.)5.7 This test method can also be used to estimate the total particulate counts excluding free water droplets in aviation turbine fuels by a chemical pretreatment of the fuel. See Appendix X2.1.1 This test method uses a specific automatic particle counter2 (APC) to count and measure the size of dispersed dirt particles, water droplets and other particles, in light and middle distillate fuel, and bio fuels such as biodiesel and biodiesel blends, in the overall range from 4 µm(c) to 100 µm(c) and in the size bands ≥4 µm(c), ≥6 µm(c), and ≥14 µm(c).NOTE 1: ASTM and military specification fuels falling within the scope of this test method include Specifications: D975 grades 1D and 2D, D1655, D3699, D4814 (see 14.1.1.1), D6751, D7467, distillate grades of D396 and D2880, MIL-DTL-83133, and MIL-DTL-16884.NOTE 2: For the purposes of this test method, water droplets are counted as particles, and agglomerated particles are detected and counted as a single larger particle. Dirt includes biological particles. Although the projected area of a particle is measured, this is expressed as the diameter of a sphere for the purposes of this test method.NOTE 3: The notation (c), used with particle sizes, is used to denote that the apparatus has been calibrated in accordance with ISO 11171. Strictly this only applies to particles up to 50 µm.NOTE 4: This test method may be used for particle sizes bands up to 100 µm(c), however the precision has only been determined for the size bands ≥4 µm(c), ≥6 µm(c), and ≥14 µm(c). All measurements are per millilitre.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method is intended for use in the laboratory or in the field to evaluate the cleanliness of distillate fuels, and liquid biofuels, such as biodiesel and diesel blends. This specific test method and the precision statement applies to off-line analysis.NOTE 5: These PCMs can be used for high pressure on-line applications as well, however the repeatability (r) and reproducibility (R) for on-line application were not established.5.2 An increase in particulate counts can indicate a change in the fuel condition caused for example by contamination during storage or transfer. Potential causes of particulates formation during storage could be “fuel-degradation products,” as described in Specification D975, Appendix X3.5.3 High levels of particles can cause filter blockages (especially when the particles are close in size to the filter porosity rating) and have a serious impact on the life of pumps, injectors, pistons, and other moving parts. Knowledge of particle size in relation to the metallurgy can provide vital information, especially if the hardness of particles is also known from other sources.5.4 This test method specifies a minimum requirement for reporting measurements in particle size bands (A1.2.1). Some specific applications may require measurements in other particle size bands. The particle count from the test should be carefully interpreted by the user as it can potentially over-state risk of abrasive damage or filter blocking due to counting water droplets as well as hard dirt particles.5.5 In situations where there is a requirement for the calibration of the apparatus to be solely in accordance with ISO 11171, Test Methods D7619, IP 565, or IP 577 may be used.1.1 This test method uses specific particle contamination monitors (PCMs) to count and measure the size of dispersed dirt particles, water droplets and other particulates, in middle distillate fuel, in the overall range from 4 µm to 70 µm and in the size bands ≥4 µm, ≥6 µm, ≥14 µm, and ≥30 µm.NOTE 1: The term particle contamination monitor, as used in this test method, is the same as that defined in ISO 21018-4; an instrument that automatically measures the concentrations of particles suspended in a fluid at certain sizes and cannot be calibrated in accordance with ISO 11171 whose output may be as a particle size distribution at limited sizes or as a contamination code.1.2 This test method has interim repeatability precision only, see Section 14 for more information.NOTE 2: ASTM specification fuels falling within the scope of this test method include Specifications: D975, D1655, D3699, D7467, MIL-DTL-83133, MIL-DTL-5624, and distillate grades of D396 and D2880.NOTE 3: For the purposes of this test method, water droplets are counted as particles, and agglomerated particles are detected and counted as a single larger particle. Dirt includes microbial particulates. Although the projected area of a particle is measured, this is expressed as the diameter of a circle for the purposes of this test method. The detector is unable to distinguish between dirt and water particles.NOTE 4: This test method may be used for particle sizes bands up to 70 µm, however the interim repeatability has only been determined for the size bands ≥4 µm, ≥6 µm, and ≥14 µm. All measurements are counts per millilitre.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The primary purpose of this practice is to describe a procedure for collecting near real-time data on airborne particle concentration and size distribution in clean areas as indicated by single particle counting techniques. Implementation of some government and industry specifications requires acquisition of particle size and concentration data using an SPC.5.2 The processing requirements of many products manufactured in a clean room involves environmental cleanliness levels so low that a single particle counter with capability for detecting very small particles is required to characterize clean room air. Real-time information on concentration of airborne particles in size ranges from less than 0.1 μm to 5 μm and greater can be obtained only with an SPC. Definition of particles larger than approximately 0.05 μm may be carried out with direct measurement of light scattering from individual particles; other techniques may be required for smaller particles, such as preliminary growth by condensation before particle measurement.5.3 Particle size data are referenced to the particle system used to calibrate the SPC. Differences in detection, electronic and sample handling systems among the various SPCs may contribute to differences in particle characterization. Care must be exercised in attempting to compare data from particles that vary significantly in composition or shape from the calibration base material. Variations may also occur between instruments using similar particle sensing systems with different operating parameters. These effects should be recognized and minimized by using standard methods for SPC calibration and operation.5.4 In applying this practice, the fundamental assumption is made that the particles in the sample passing through the SPC are representative of the particles in the entire dust-controlled area being analyzed. Care is required that good sampling procedures are used and that no artifacts are produced at any point in the sample handling and analysis process; these precautions are necessary both in verification and in operation of the SPC.1.1 This practice covers the determination of the particle concentration, by number, and the size distribution of airborne particles in dust-controlled areas and clean rooms, for particles in the size range of approximately 0.01 to 5.0 μm. Particle concentrations not exceeding 3.5 × 106 particles/m 3 (100 000/ft3) are covered for all particles equal to and larger than the minimum size measured.1.2 This practice uses an airborne single particle counting device (SPC) whose operation is based on measuring the signal produced by an individual particle passing through the sensing zone. The signal must be directly or indirectly related to particle size.NOTE 1: The SPC type is not specified here. The SPC can be a conventional optical particle counter (OPC), an aerodynamic particle sizer, a condensation nucleus counter (CNC) operating in conjunction with a diffusion battery or differential mobility analyzer, or any other device capable of counting and sizing single particles in the size range of concern and of sampling in a cleanroom environment.1.3 Individuals performing tests in accordance with this practice shall be trained in use of the SPC and shall understand its operation.1.4 Since the concentration and the particle size distribution of airborne particles are subject to continuous variations, the choice of sampling probe configuration, locations, and sampling times will affect sampling results. Further, the differences in the physical measurement, electronic, and sample handling systems between the various SPCs and the differences in physical properties of the various particles being measured can contribute to variations in the test results. These differences should be recognized and minimized by using a standard method of primary calibration and by minimizing variability of sample acquisition procedures.1.5 Sample acquisition procedures and equipment may be selected for specific applications based on varying cleanroom class levels. Firm requirements for these selections are beyond the scope of this practice; however, sampling practices shall be stated that take into account potential spatial and statistical variations of suspended particles in clean rooms.NOTE 2: General references to cleanroom classifications follow Federal Standard 209E, latest revision. Where airborne particles are to be characterized in dust-controlled areas that do not meet these classifications, the latest revision of the pertinent specification for these areas shall be used.1.6 Units—The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazards statements, see Section 8.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The test method for particulate sizing and numbers on garments is nondestructive and may be used to evaluate the contamination levels of fibers and particles on and in clean room garments. The test may be used for evaluating the cleanliness levels of new or newly cleaned garments. It also may be used to evaluate the extent of fiber and particulate contamination on garments that have been worn, if necessary. For this application, it is necessary to sample representative areas of the garment fabric.1.1 This test method covers the determination of detachable particulate contaminant 5 μm or larger, in and on the fabric of clean room garments.1.2 This test method does not apply to nonporous fabrics such as Tyvek (trademarked) or Gortex (trademarked). It only applies to fabrics that are porous such as cotton or polyester.1.3 This test method provides not only the traditional optical microscopic analysis but also a size distribution and surface obscuration analysis for particles on a fine-textured membrane filter or in a tape lift sample. It utilizes transmitted illumination to render all particles darker than the background for gray level detection. Particles collected on opaque plates must be transferred to a suitable membrane filter.1.4 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.5 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

This test method covers the apparatuses required, sampling methods, standard procedures and calculations, and test reports for counting and sizing airborne microparticulate matter, the sampling areas for which are specifically those with contamination levels typical of cleanrooms and dust-controlled areas. The test method is based on the microscopical examination of particles impinged upon a membrane filter with the aid of a vacuum. Sampling may be done in a cleanroom, clean zone, or other controlle areas, or in a duct or pipe, wherein the number of sampling points is proportional to the floor area of the enclosure to be checked. The apparatus and facilities required are typical of a laboratory for the study of macroparticle contamination. The operator must have adequate basic training in microscopy and the techniques of particle sizing and counting.1.1 This test method covers counting and sizing airborne particulate matter 5 µm and larger (macroparticles). The sampling areas are specifically those with contamination levels typical of cleanrooms and dust-controlled areas.1.2 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏
32 条记录,每页 15 条,当前第 1 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页