微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 The determination of WPPO composition is useful in optimization of process variables, diagnosing unit performance, and in evaluating the effect of changes in waste plastic composition on WPPO performance properties.5.1.1 Aromatics and olefin hydrocarbon type analysis, including sub-classes, may be useful for evaluating suitability of WPPO as a feedstock for further processing.1.1 This test method covers a standard procedure for the determination of hydrocarbon types (saturates, olefins, styrenes, aromatics and polyaromatics) of waste plastic process oil (WPPO) from chemical or thermal processes using gas chromatography and vacuum ultraviolet absorption spectroscopy detection (GC-VUV).1.1.1 This test method is applicable for plastic recycling and circular schemes including wide range density material from polyethylene and polypropylene.1.1.2 The test method is applicable to waste plastic process oil having a final boiling point of 545 °C or lower at atmospheric pressure as measured by this test or Test Method D2887. This test method is limited to samples having a boiling range greater than 36 °C, and having a vapor pressure sufficiently low to permit sampling at ambient temperature.1.1.3 WPPOs with initial boiling points less than nC5 (36 °C) and final boiling point less than nC15 (271 °C) may be analyzed by Test Method D8369.1.1.4 Appendix X3 is applicable to waste plastic process oils that are predominantly hydrocarbons in the boiling range of pentane, nC5 (36 °C) to tetrahexacontane, nC64 (629 °C).1.2 Concentrations of group type totals are determined by percent mass or percent volume. The applicable working ranges are as follows:Total Aromatics %Mass 1 to 50Monoaromatics %Mass 1 to 50Diaromatics %Mass 1 to 15Tri-plus aromatics %Mass 0.5 to 5PAH %Mass 0.5 to 15Saturates %Mass 5 to 99Olefins %Mass 1 to 80Conjugated diolefins %Mass 0.2 to 5Styrenes %Mass 0.2 to 5The final precision concentration ranges will be defined by a future ILS.1.2.1 Saturates totals are the result of the summation of normal paraffins, isoparaffins, and naphthenes.1.2.2 Aromatics are the summation of monoaromatic and polyaromatic group types. Polyaromatic totals are the result of the summation of diaromatic and tri-plus aromatic group types.1.2.3 Olefin totals are the result of the sum of mono-olefins, conjugated diolefins, non-conjugated diolefins, and cyclic olefins.1.2.4 Styrenes totals are the sum of styrene and alkylated styrenes. Styrenes are classified separately, neither as aromatic nor olefin.1.3 Waste plastic process oil containing mixed plastic types such as polyethylene terephthalate PET and polyvinyl chloride or other material may yield compounds including hetero-compounds that are not speciated by this test method.1.4 Individual components are typically not baseline separated by the procedure described in this test method. The coelutions are resolved at the detector using VUV absorbance spectra and deconvolution algorithms.1.5 This test method may apply to other process oils from sources such as tires and bio-mass boiling between pentane (36 °C) and tetratetracontane (545 °C), but has not been extensively tested for such applications.1.6 Units—The values stated in SI units are to be regarded as standard. No other units of measurement, other than the boiling point of normal paraffins (°F) in Table 2 and Table X.3.1, are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

3.1 Coatings intended to be cured by ultraviolet radiation, especially those involving free radical chemistry, tend to polymerize during storage. It is of interest to determine how well a formulation resists this effect. Many factors influence the storage stability of a composition. The procedures described here are intended to improve the precision of determining this property. Because the effects of resins, monomers, photoinitiators, synergists, stabilizers, or pigments can alter the relation between elevated and room temperature stabilities, any correlation of performance at two different temperatures is possible only with a given formulation and, therefore, is useful only for quality control.1.1 This method covers procedures for testing the package stability of coatings intended to be cured by ultraviolet radiation. One procedure is given for clear coatings and another for opaque fillers.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Some process catalysts used in refining can be poisoned when trace amounts of sulfur bearing materials are contained in the feedstocks. There are also government regulations as to how much sulfur is permitted to be present in commercial transportation fuels. This test method can be used to determine sulfur in process and downstream distribution streams. It can also be used for purposes of screening and quality control of finished hydrocarbon fuel products.1.1 This test method covers the determination of total sulfur in liquid hydrocarbon based fuel with a final boiling point of up to 450 °C. It is applicable to analysis of natural, processed and final product materials containing sulfur in the range of 4.0 mg/kg to 830 mg/kg (see Note 1).NOTE 1: For liquid hydrocarbons containing less than 4.0 mg/kg total sulfur or more than 830 mg/kg total sulfur, Test Method D5453 may be more appropriate.1.2 This test method is applicable for total sulfur determination in liquid hydrocarbons containing less than 0.35 % (m/m) halogen(s).1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see 4.1, 8.3, and Section 9.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

5.1 This test method determines the effectiveness of UVGI devices for reducing viable microorganisms deposited on carriers.5.2 This test method evaluates the effect soiling agents have on UVGI antimicrobial effectiveness.5.3 This test method determines the delivered UVGI dose.1.1 This test method defines test conditions to evaluate ultraviolet germicidal irradiation (UVGI) light devices (mercury vapor bulbs, light-emitting diodes, or xenon arc lamps) that are designed to kill/inactivate influenza virus deposited on inanimate carriers.1.2 This test method defines the terminology and methodology associated with the ultraviolet (UV) spectrum and evaluating UVGI dose.1.3 This test method defines the testing considerations that can reduce UVGI surface kill effectiveness (that is, soiling).1.4 Protocols for adjusting the UVGI dose to impact the reductions in levels of viable influenza virus are provided (Annex A1).1.5 This test method does not address shadowing.1.6 The test method should only be used by those trained in microbiology and in accordance with the guidance provided by Biosafety in Microbiological and Biomedical Laboratories.21.7 This test method is specific to influenza viruses1.8 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.9 Warning—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Use caution when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for additional information. The potential exists that selling mercury or mercury-containing products, or both, is prohibited by local or national law. Users must determine legality of sales in their location.1.10 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.11 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The significance of this practice is that a textile intended to be labeled as UV-protective, which will ultimately be submitted for UV transmittance testing, will be in a state that simulates its condition at the end of two years of normal seasonal use. UV resistance of a textile is dynamic and will constantly change. The simulated conditions are to be regarded as only estimates of the changes that will occur to the textile in two years of normal seasonal use.5.2 To learn the quantitative measure of UV transmission or blocking, reference AATCC TM183.5.3 To label textiles as UV-protective, reference Specification D6603.1.1 This practice covers standardized exposures to laundering, simulated sunlight, and chlorinated pool water to simulate two years of seasonal exposure for apparel textiles labeled as ultraviolet (UV)-protective.1.2 This practice is used in conjunction with AATCC TM183 and Specification D6603 as they relate to testing and labeling of UV-protective textiles after two years of simulated seasonal use.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is suitable for determining the quantity of hydrogen peroxide, organic hydroperoxides, and organic peroxides as total active oxygen in various hydrocarbon streams for both quality control and quality assurance of the product.1.1 This test method covers the determination of trace peroxides in various hydrocarbon streams. A list of typical hydrocarbon streams can be found in Appendix X2.1.2 This test method is applicable to the determination of peroxides in petroleum liquids including, but not limited to, 1,3-butadiene, styrene, methylcyclohexane, and alpha olefins in the range of 0.1 mg/kg to 100 mg/kg active oxygen. The limit of detection (LOD) is 0.03 mg/kg for active oxygen and the limit of quantitation (LOQ) is 0.11 mg/kg active oxygen. The upper limit has been determined by the calibration range.NOTE 1: LOD and LOQ were calculated using data obtained during development of the method.1.3 In determining the conformance of the test results using this method to applicable specifications, results shall be rounded off in accordance with the rounding-off method of Practice E29.1.4 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 9.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
92 条记录,每页 15 条,当前第 1 / 7 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页