微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 Uranium dioxide is used as a nuclear-reactor fuel. Gadolinium oxide is used as an additive to uranium dioxide. In order to be suitable for this purpose, these materials must meet certain criteria for impurity content. This test method is designed to determine whether the carbon content meets Specifications C753, C776, C888, and C922.1.1 This test method covers the determination of carbon in nuclear-grade uranium oxide powders and pellets to determine compliance with specifications.1.2 Gadolinium oxide (Gd2O3) and gadolinium oxide-uranium oxide powders and pellets may also be analyzed using this test method.1.3 This test method covers the determination of 5 to 500 μg of residual carbon.1.4 This test method describes an induction furnace carrier gas combustion system equipped with an infrared detector. It may also be applied to a similar instrument equipped with a thermal conductivity detector.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5.1 The preferred system of units is micrograms carbon per gram of sample (μg/g sample) or micrograms carbon per gram of uranium (μg/g U).1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Uranium and plutonium are used in nuclear reactor fuel and must be analyzed to insure that they meet certain criteria for isotopic composition as described in Specifications C833 and C1008. This practice is used to chemically separate the same mass peak interferences from uranium and plutonium and from other impurities prior to isotopic abundance determination by thermal ionization mass spectrometry.5.2 In those facilities where perchloric acid use is tolerated, the separation in Test Method C698 may be used prior to isotopic abundance determination. Uranium and plutonium concentrations as well as isotopic abundances using thermal ionization mass spectrometry can be determined using this separation and following Test Method C1625.1.1 This practice is for the ion exchange separation of uranium and plutonium from each other and from other impurities for subsequent isotopic analysis by thermal ionization mass spectrometry. Plutonium-238 and uranium-238, and plutonium-241 and americium-241, will appear as the same mass peak and must be chemically separated prior to analysis. Only high purity solutions can be analyzed reliably using thermal ionization mass spectrometry.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
ASTM C1689-21 Standard Practice for Subsampling of Uranium Hexafluoride Active 发布日期 :  1970-01-01 实施日期 : 

5.1 Uranium hexafluoride is normally produced and handled in large (typically 1- to 14-ton) quantities and must, therefore be characterized by reference to representative samples. The samples are used to determine compliance with the applicable commercial Specifications C996 and C787 by means of the appropriate test method (for example, Test Method C761 and references therein). The quantities involved, physical properties, chemical reactivity, and hazardous nature of UF6 are such that for representative sampling, specially designated equipment must be used and operated in accordance with the most carefully controlled and stringent procedures. This practice indicates appropriate principles, equipment and procedures currently in use for subsampling of liquid UF6. It is used by UF6 converters, enrichers and fuel fabricators to review the effectiveness of existing procedures or to design equipment and procedures for future use. Other subsampling procedures such as UF6 vapor sampling are not directly representative of the chemical quality of liquid UF6.5.2 It is emphasized that this test guide is not meant to address conventional or nuclear criticality safety issues, nor does it address the conditioning of subsample tubes to make them suitable for transport.1.1 This practice is applicable to subsampling uranium hexafluoride (UF6), using heat liquefaction techniques, from bulk containers, obtained in conformance with Practices C1052, C1703, and C1883, into smaller sample containers, which are required for laboratory analyses.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 It is assumed that the liquid UF6 being sampled comprises a single quality and quantity of material. This practice does not address any special additional arrangement that might be required for taking proportional or composite samples.1.4 The number of samples to be taken, their nominal sample weight, and their disposition shall be agreed upon between the parties.1.5 The scope of this practice does not include provisions for preventing criticality incidents.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Uranium hexafluoride used to produce nuclear fuel must meet certain criteria for its isotopic composition as described in Specifications C787 and C996.1.1 This method applies to the determination of isotopic composition in hydrolyzed nuclear grade uranium hexafluoride. It covers isotopic abundance of  235U between 0.1 and 5.0 % mass fraction, abundance of  234U between 0.0055 and 0.05 % mass fraction, and abundance of   236U between 0.0003 and 0.5 % mass fraction. This test method may be applicable to other isotopic abundance providing that corresponding standards are available.1.2 This test method can apply to uranyl nitrate solutions. This can be achieved either by transforming the uranyl nitrate solution to a uranyl fluoride solution prior to the deposition on the filaments or directly by depositing the uranyl nitrate solution on the filaments. In the latter case, a calibration with uranyl nitrate standards must be performed.1.3 This test method can also apply to other nuclear grade matrices (for example, uranium oxides) by providing a chemical transformation to uranyl fluoride or uranyl nitrate solution.1.4 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 These test methods are applicable to the determination of microquantities of uranium in water in the concentration range from 0.005 to 50 mg/L. 1.2 The uranium fluorescence is quenched by many cations and some anions in the sample; it is enhanced by a few cations. If interfering ions are present, a direct fluorometric measurement is not suitable, and an extraction method must be used to provide accurate results. The test methods and their concentration ranges are as follows: Concentration Range, mg/L Sections Test Method A---Direct Fluorometric 0.005 to 2 7 to 15 Test Method B---Extraction 0.04 to 50 16 to 24 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazards, see Note 1.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

Uranium production facilities must control trace uranium content in their waste waters.Colorimetric and fluorimetric methods have been developed but require a tedious separation of interfering elements. Trace uranium can also be determined by ICP-MS but not all water matrices are adapted (for example, waters with high salt content). Direct X-ray fluorescence can be done on the liquid but with a detection limit of ∼5 mg/LX-ray fluorescence after collection of uranium offers the advantages to reach low detection limits (0.05 mg/L) and to avoid handling a liquid in the spectrometer.1.1 This test method applies for the determination of trace uranium content in waste water. It covers concentrations of U between 0.05 mg/L and 2 mg/L.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This specification covers finished pellets composed of sintered gadolinium oxide-uranium dioxide of any concentration for use in light-water reactors. Materials shall adhere to specified chemical (impurity content, stoichiometry, moisture content, and gadolinium oxide concentration), nuclear (isotopic content), and physical (dimensions, density, homogeneity, integrity, axial and circumferential surface cracks, cylindrical surface chips, pellets ends, cleanliness and workmanship, identification, and irradiation stability) requirements.1.1 This specification is for finished sintered (U,Gd)O2 pellets. It applies to (U,Gd)O2 pellets containing uranium (U) of any 235U concentration and any concentration of gadolinium oxide (Gd2O3) for use in nuclear reactors.1.2 This specification recognizes the presence of reprocessed U in the fuel cycle and consequently defines isotopic limits for (U,Gd)O2 pellets made from commercial grade UO2. Such commercial grade UO2 is defined so that, regarding fuel design and manufacture, the product is essentially equivalent to that made from unirradiated U. UO2 falling outside these limits cannot necessarily be regarded as equivalent and may thus need special provisions at the fuel fabrication plant or in the fuel design.1.3 This specification does not include (a) provisions for preventing criticality accidents, (b) requirements for health and safety, (c) avoidance of hazards, or (d) shipping precautions and controls. Observance of this specification does not relieve the user of the obligation to be aware of and conform to all applicable international, federal, state, and local regulations pertaining to possessing, shipping, processing, or using source or special nuclear material. Examples of U.S. Governmental documents are Code of Federal Regulations (Latest Edition), Title 10, Part 50, Title 10, Part 70, Title 10, Part 71, and Title 49, Part 173.1.4 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 The following precautionary caveat pertains only to the technical requirements portion, Section 4, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Uranium hexafluoride is normally produced and handled in large (typically 1 to 14-ton) quantities and must, therefore, be characterized by reference to representative samples (see ISO 7195). The samples are used to determine compliance with the applicable commercial specification C787. The quantities involved, physical properties, chemical reactivity, and hazardous nature of UF6 are such that for representative sampling, specially designed equipment must be used and operated in accordance with the most carefully controlled and stringent procedures. This practice can be used by UF6 converters to review the effectiveness of existing procedures or as a guide to the design of equipment and procedures for future use.5.2 The intention of this practice is to avoid liquid UF6 sampling once the cylinder has been filled. For safety reasons, manipulation of large quantities of liquid UF6 should be avoided when possible.5.3 It is emphasized that this practice is not meant to address conventional or nuclear criticality safety issues.1.1 This practice covers methods for withdrawing representative sample(s) of uranium hexafluoride (UF6) during a transfer occurring in the gas phase. Such transfer in the gas phase can take place during the filling of a cylinder during a continuous production process, for example the distillation column in a conversion facility. Such sample(s) may be used for determining compliance with the applicable commercial specification, for example Specification C787.1.2 Since UF6 sampling is taken during the filling process, this practice does not address any special additional arrangements that may be agreed upon between the buyer and the seller when the sampled bulk material is being added to residues already present in a container (“heels recycle”). Such arrangements will be based on QA procedures such as traceability of cylinder origin (to prevent for example contamination with irradiated material).1.3 If the receiving cylinder is purged after filling and sampling, special verifications must be performed by the user to verify the representativity of the sample(s). It is then expected that the results found on volatile impurities with gas phase sampling may be conservative.1.4 This practice is only applicable when the transfer occurs in the gas phase. When the transfer is performed in the liquid phase, Practice C1052 should apply. This practice does not apply to gas sampling after the cylinder has been filled since the sample taken will not be representative of the cylinder.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Uranium hexafluoride is a basic material used to produce nuclear reactor fuel. To be suitable for this purpose, the material must meet criteria for isotopic composition. This test method is designed to determine whether the material meets the requirements described in Specifications C787 and C996.1.1 This test method is applicable to the isotopic analysis of uranium hexafluoride (UF6) with 235U concentrations less than or equal to 5 % and  234U,   236U concentrations of 0.0002 to 0.1 %.1.2 This test method may be applicable to the analysis of the entire range of  235U isotopic compositions providing that adequate Certified Reference Materials (CRMs or traceable standards) are available.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Uranium hexafluoride used to produce nuclear-reactor fuel must meet certain criteria for its isotopic composition. This test method may be used to help determine if sample materials meet the criteria described in Specifications C787 and C996.1.1 This test method covers a quantitative test method applicable to determining the mass percent of uranium isotopes in uranium hexafluoride (UF6) samples. This method as described is for concentrations of 235U between 0.1 and 10 mass %, and 234U and 236U between 0.0001 and 0.1 mass %.1.2 This test method is for laboratory analysis by a gas mass spectrometer with a multi-collector.1.3 This standard complements Test Methods C761, the double-standard method for gas mass spectrometers using a single collector, by providing a method for spectrometers using a multi-collector.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Uranium dioxide is used as a nuclear-reactor fuel. This test method is designed to determine whether the percent uranium and O/U or O/M content meet Specifications C776 and C922.1.1 This test method applies to the determination of uranium, the oxygen to uranium (O/U) ratio in sintered uranium dioxide pellets, and the oxygen to metal (O/M) ratio in sintered gadolinium oxide-uranium dioxide pellets with a Gd2O3 concentration of up to 12 weight %. The O/M calculations assume that the gadolinium and uranium oxides are present in a metal dioxide solid solution.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazards statements, see Section 9.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The test method is designed to show whether or not a material meets the specifications as given in Specifications C753 or C776.5.2 The powder’s stoichiometry is useful for predicting the oxide's sintering behavior in the pellet production process.1.1 This test method covers the determination of uranium and the oxygen to uranium atomic ratio in nuclear grade uranium dioxide powder and pellets.1.2 This test method does not include provisions for preventing criticality accidents or requirements for health and safety. Observance of this test method does not relieve the user of the obligation to be aware of and conform to all international, national, or federal, state and local regulations pertaining to possessing, shipping, processing, or using source or special nuclear material.1.3 This test method also is applicable to UO3 and U3O8 powder.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 This guide covers testing protocols for testing the pyrophoricity/combustibility characteristics of metallic uranium-based spent nuclear fuel (SNF). The testing will provide basic data for input into more detailed computer codes or analyses of thermal, chemical, and mechanical SNF responses. These analyses would support the engineered barrier system (EBS) design bases and safety assessment of extended interim storage facilities and final disposal in a geologic repository. The testing also could provide data related to licensing requirements for the design and operation of a monitored retrievable storage facility (MRS) or independent spent fuel storage installation (ISFSI).1.2 This guide describes testing of metallic uranium and metallic uranium-based SNF in support of transportation (in accordance with the requirements of 10CFR71), interim storage (in accordance with the requirements of 10CFR72), and geologic repository disposal (in accordance with the requirements of 10CFR60/63). The testing described herein is designed to provide basic data related to the evaluation of the pyrophoricity/combustibility characteristics of containers or waste packages containing metallic uranium SNF in support of safety analyses (SAR), or performance assessments (PA) of transport, storage, or disposal systems, or a combination thereof.1.3 Spent nuclear fuel that is not reprocessed must be emplaced in secure temporary interim storage as a step towards its final disposal in a geologic repository. In the United States, SNF, from both civilian commercial power reactors and defense nuclear materials production reactors, will be sent to interim storage, and subsequently, to deep geologic disposal. U.S. commercial SNF comes predominantly from light water reactors (LWRs) and is uranium dioxide-based, whereas U.S. Department of Energy (DOE) owned defense reactor SNF is in several different chemical forms, but predominantly (approximately 80 % by weight of uranium) consists of metallic uranium.1.4 Knowledge of the pyrophoricity/combustibility characteristics of the SNF is required to support licensing activities for extended interim storage and ultimate disposition in a geologic repository. These activities could include interim storage configuration safety analyses, conditioning treatment development, preclosure design basis event (DBE) analyses of the repository controlled area, and postclosure performance assessment of the EBS.1.5 Metallic uranium fuels are clad, generally with zirconium, aluminum, stainless steel, or magnesium alloy, to prevent corrosion of the fuel and to contain fission products. If the cladding is damaged and the metallic SNF is stored in water the consequent corrosion and swelling of the exposed uranium enhances the chemical reactivity of the SNF by further rupturing the cladding and creating uranium hydride particulates and/or inclusions in the uranium metal matrix. The condition of the metallic SNF will affect its behavior in transport, interim storage or repository emplacement, or both, and therefore, influence the engineering decisions in designing the pathway to disposal.1.6 Zircaloy spent fuel cladding has occasionally demonstrated pyrophoric behavior. This behavior often occurred on cladding pieces or particulate residues left after the chemical dissolution of metallic uranium or uranium dioxide during fuel reprocessing of commercial spent fuel and/or extraction of plutonium from defense reactor spent fuel. Although it is generally believed that zirconium is not as intrinsically prone to pyrophoric behavior as uranium or plutonium, it has in the past ignited after being sensitized during the chemical extraction process. Although this guide primarily addresses the pyrophoricity of the metallic uranium component of the spent fuel, some of the general principles involved could also apply to zirconium alloy spent fuel cladding.1.7 The interpretation of the test data depends on the characteristics of the sample tested and/or the usage to which the test results are put. For example, usage could include simple comparison of the relative ignition temperature of different sample configurations or as inputs to more complex computer simulations of spontaneous ignition. The type and the size of the SNF sample must be chosen carefully and accounted for in the usage of the data. The use of the data obtained by the testing described herein may require that samples be used which mimic the condition of the SNF at times far into the future, for example, the repository postcontainment period. This guide does not specifically address methods for `aging' samples for this purpose. The section in Practice C 1174 concerning the accelerated testing of waste package materials is recommended for guidance on this subject.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This test method is applicable to samples containing 1 to 10 % gadolinium oxide and 90 to 99 % uranium oxide on the “as received” basis. The method may be used to determine concentration of either uranium, gadolinium, or both.5.2 Either wavelength-dispersive or energy-dispersive X-ray fluorescence systems may be used provided the software accompanying the system is able to accommodate the use of internal standards.1.1 This test method describes the steps necessary for the preparation and analysis by X-ray fluorescence (XRF) of gadolinium or uranium (or both) in gadolinium oxide-uranium oxide pellets or powders.1.2 This test method requires the use of appropriate internal standard(s). Care must be taken to ascertain that samples analyzed by this method do not contain the internal standard element(s) or that this contamination has been corrected for mathematically whenever present. Such corrections are not addressed in this test method.1.3 This standard contains notes that are explanatory and are not part of the mandatory requirements of the standard.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautions are given in Section 8 and various notes throughout the method.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Uranium dioxide is used as a nuclear-reactor fuel. Gadolinium oxide is used as an additive to uranium dioxide. In order to be suitable for this purpose, these materials must meet certain criteria for impurity content. This test method is designed to determine whether the hydrogen content meets Specifications C753, C776, C888, and C922.1.1 This test method applies to the determination of hydrogen in nuclear-grade uranium oxide powders and pellets to determine compliance with specifications. Gadolinium oxide (Gd2O3) and gadolinium oxide-uranium oxide powders and pellets may also be analyzed using this test method.1.2 This standard describes a procedure for measuring the total hydrogen content of uranium oxides. The total hydrogen content results from absorbed water, water of crystallization, hydro-carbides and other hydrogenated compounds which may exist as fuel's impurities.1.3 This test method covers the determination of 0.05 to 200 μg of residual hydrogen.1.4 This test method describes an electrode furnace carrier gas combustion system equipped with a thermal conductivity detector.1.5 The preferred system of units is micrograms hydrogen per gram of sample (μg/g sample) or micrograms hydrogen per gram of uranium (μg/g U).1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 9.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
85 条记录,每页 15 条,当前第 1 / 6 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页