微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

This practice addresses coal mining geospatial environmental monitoring resource data relative to SMCRA and 30 CFR Part 700, et seq. This practice is significant to the coal mining community because it provides uniformity of geospatial data pertaining to environmental resource location points throughout the United States. This standard is one of several coal mining geospatial data standards to be developed for use by an RA. These standards will help ensure uniformity of coal mining geospatial data used in internal business practices, exchanged among business partners within the coal mining community, and contributed by each ADS in future efforts to create national datasets describing coal mining in the United States. Use of this standard will result in organized and accessible data to support programmatic decisions and work plan development, increased awareness of the permitted coal mining operations throughout the United States and better communication between the RA, other governmental entities, the public, and industry.Coal mining geospatial data shall be obtained from state, tribal, and federal regulatory authorities for SCMO. The coal mining community encompasses all entities directly and indirectly affected by coal mining activities, including industry, environmental groups, the general public, and the government at all levels within the United States. Use of this standard will help create consistent maps and increase understanding of SCMO sites throughout the United States. This standard promotes the creation of well organized and easily accessible coal mining data, and it will facilitate better communication between state and federal offices, the public, industry, and environmental groups.Within its area of exclusive jurisdiction, each RA is the ADS for coal mining spatial data that it creates and uses to regulate mining activity.This geospatial data standard will help ensure uniformity of data contributed by each RA and assist organizations in efforts to create, utilize, and share geospatial data relative to SMCRA and it will lead to better communication between state, tribal, and federal regulatory offices, the public, and industry.In addition to a defining ERML, this standard over time will allow identification of changes in the ERML’s as the mined area changes.Participation in the compilation of spatial data is not uniform across RAs, which may affect completeness, both in terms of spatial data, and associated attributes.This standard conforms to the definition of a Data Content Standard as promulgated by the U.S. Federal Geographic Data Committee (FGDC). Terminology and definitions for identifying geographical features and describing the data model has been adopted from the FGDC Spatial Data Transfer Standard (ANSI INCITS 320-1998 (R2003)) and the FGDC Framework Data Content Standard (FGDC Project 1574-D) and other geographic area boundaries.Although this standard is written specifically for the coal mining industry, its general purpose and content are applicable to other mining operations.1.1 This practice covers the minimum elements for the accurate location and description of geospatial data for defining a coal mining environmental resource monitoring location (ERML).1.1.1 This practice addresses coal mining geospatial environmental resource monitoring data relative to the Surface Mining Control and Reclamation Act of 1977 (SMCRA). This geospatial data shall be obtained from each state, tribal, or federal, or combinations thereof, coal mining regulatory authority (RA) authorized under SMCRA to regulate surface coal mining operations (SCMO). Each RA shall be the authoritative data source (ADS) for coal mining geospatial data.1.1.2 As used in this practice, coal mining ERML’s represents points where surface, groundwater, and geologic drill hole chemistry are used to determine any probable hydrologic consequences where coal removal, reclamation and related supporting activities has occurred, is occurring, or is planned and authorized by the RA within a defined SCMO. These locations may also include dam safety, impoundments, diversions, air quality, air blasts (blasting), construction (refuse piles), and subsidence.1.1.3 This standard is one of several that have been approved or are in development related to SMCRA approved coal mining operations. Also under development is a terminology standard. Initial development of these standards is being done on an individual basis; however, they may be consolidated to reduce repetition of information between them.1.2 This practice applies to pre-SMCRA and post-SMCRA ERML’s.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulator limitations prior to use.1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.5 This practice offers a set of instructions for performing one or more specific operations. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this practice may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project’s many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 These test methods provide a field technique for the bacteriological analysis of electronic process waters. The sampling of these waters and subsequent bacteriological analysis may be critical to electronic product yields. Bacteria can be the prime source of harmful contamination which can significantly reduce the yield of satisfactory microelectronic device production.5.2 The test methods described here may be used both to monitor the bacteriological quality of water used in microelectronic product processing, and to locate the source of bacterial contamination in a water purification system.5.3 These test methods are simple field methods, combining sampling and bacteriological analysis techniques that do not require bacteriological laboratory facilities.5.4 The test methods described employ culture techniques for bacteriological analysis. The user should be aware that such techniques cannot provide a complete count of the total viable bacteria present, since clumps and clusters of bacteria will appear as one single colony when cultured, and since some viable bacteria will not grow under the test conditions used. However, a meaningful comparative bacteria count will be achieved by this method if the culturing of the sample is always done at the same temperature, and for the same period of time. The temperature of incubation should always be at 28 ± 2°C, and the period of incubation should be 48 h (or 72 h if time permits). The period of incubation and temperature should be the same for all comparative studies.1.1 These test methods cover sampling and analysis of high purity water from water purification systems and water transmission systems by the direct sampling tap and filtration of the sample collected in the bag. These test methods cover both the sampling of water lines and the subsequent microbiological analysis of the sample by the culture technique. The microorganisms recovered from the water samples and counted on the filters include both aerobes and facultative anaerobes.1.2 Three methods are described as follows:  SectionsTest Method A—Sample Tap—Direct Filtration 6 to 8Test Method B—Presterilized Plastic Bag Technique 9 to 12Test Method B2 —Dip Strip Technique2/Presterilized Plastic Bag  1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 Geomembranes are used as impermeable barriers to prevent liquids leaking out of landfills, ponds, and other containment facilities. In addition, geomembranes are also used to prevent external liquids leaking into to these types of facilities (for example, floating covers, landfill caps, and roofs of storage tanks). The liquids may contain contaminants that, if released, can cause damage to the environment or damage to the contents where protection is against leakage into the facility. In the case of a landfill cap, leakage increases the amount of leachate that the landfill can produce. Leaking liquids can erode the subgrade, causing further damage. Leakage can result in product loss or otherwise prevent the installation from performing its intended containment purpose. For these reasons, it is desirable that the geomembrane have as little leakage as practical.4.2 Geomembrane leaks can be caused by poor quality of the subgrade, poor quality of the material placed on the geomembrane, accidents, poor workmanship, manufacturing defects, and carelessness.4.3 The most significant causes of leaks in geomembranes that are covered with only water are related to construction activities, including pumps and equipment placed on the geomembrane, accidental punctures, punctures caused by traffic over rocks or debris on the geomembrane or in the subgrade, and ruptures caused by settlement during filling.4.4 The most significant cause of leaks in geomembranes covered with earthen materials is construction damage caused by machinery that occurs while placing the earthen material on the geomembrane. Such damage also can breach additional layers of the lining system such as geosynthetic clay liners.4.5 As a practical measure, other electrical leak location methods (see Guide D6747) should be used in conjunction with the permanent monitoring system to eliminate leaks in the installed geomembrane(s) as part of facility construction. Such methods must include testing of the exposed geomembrane before covering and before commissioning a permanent monitoring system. Then the permanent monitoring system can be used in conjunction with other cover geomembrane testing methods to quickly detect and locate all leaks caused by the covering process.4.6 Permanent electric leak location monitoring methods are used to first detect and then subsequently locate leaks for repair during the whole life of the geomembrane. They are designed to detect and locate leaks at the end of the construction phase and during the operational and closure phases and also to monitor any post-closure phases. These practices can easily achieve a zero-leak condition at the conclusion of the measurement(s) at the end of the construction phase. If any of the requirements for measurement area preparation and testing procedures is not adhered to, however, then leaks can remain in the geomembrane after the construction phase completion measurement. On some sites it may not be practicable to achieve, but the closer the site can be designed (and carefully constructed to that design), the closer it will reach the ideal zero-leak condition.4.7 Through the life of the facility monitored by an electric leak location system, leaks that are detected can be repaired. Often the difficulties of carrying out a repair are cited as a reason for not applying this method. However, history has shown that it may be better to know, in order to minimize late-life remedial work, by repairing leaks in a sector of a site rather than entirely exhuming and relocating (waste, for example) to a new site.4.8 A permanent electric leak location monitoring system must last longer than the geomembrane it is designed to monitor, otherwise failure caused by degradation of that material will not be detected. To achieve this, all buried components and the associated electrical connections must be designed in such a way as to achieve this and additionally must avoid metallic corrosion of the buried components and/or critical connections.1.1 These practices describe standard procedures for using electrical methods to locate leaks in geomembranes covered with liquid, earthen materials, waste, and/or any material deposited on the geomembrane.1.2 These practices are intended to ensure that permanent leak detection and location systems are effective, which can result in complete containment (no leaks in the geomembrane).1.3 Not all sites will be easily amenable to this method, but some preparation can be performed in order to enable this method at nearly any site as outlined in Section 6. If ideal testing conditions cannot be achieved (or designed out), the method can still be performed, but any issues with site conditions must be documented.1.4 Permanent monitoring systems for electrical leak detection and location can be used on geomembranes installed in basins, ponds, tanks, ore and waste pads, landfill cells, landfill caps, and other containment facilities including civil engineering structures. The procedures are applicable for geomembranes made of materials such as polyethylene, polypropylene, polyvinyl chloride, chlorosulfonated polyethylene, bituminous material, and other sufficiently electrically insulating materials.1.5 Any permanent electrical monitoring system must detect the occurrence of a leak through the geomembrane, and it must last longer than the monitored geomembrane by nature of the concept. Therefore, all buried components and mechanical and electrical connections must be made of material either the same as the geomembrane, in case of sensors situated above geomembrane, or made from a material with a longer lifespan in cases where they are situated under the monitored geomembrane.1.6 Permanent electrical monitoring systems are comprised of either large mesh pads separated by nominal spaces, or a grid of sensors situated either below the geomembrane or above the geomembrane or in both positions (below and above the geomembrane). In specific cases, sensors may be situated only at the perimeter of the monitored lined facility.1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.8 The electrical methods used for geomembrane leak location should be attempted only by qualified and experienced personnel. Appropriate safety measures should be taken to protect the leak location operators, as well as other people at the site.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is intended for the application of PQ magnetometry in assessing the progression of wear in machinery, for example, engines and gearboxes, by trending the mass of ferrous debris in samples of lubricating oils or greases.5.2 In-service oil analysis is carried out routinely by commercial laboratories on a wide range of samples from many sources and is accepted as a reliable means of monitoring machinery health by trend analysis. In particular, the extent of wear can be readily assessed from any changes in the ferrous debris burden within periodically extracted samples as reflected in the PQ Index.5.3 PQ measurements can be used as a means of rapidly screening samples for the presence or absence of ferrous wear debris, allowing quick decisions to be made on whether or not to proceed to a more detailed spectroscopic analysis for probable wear metals in the sample.5.4 The use of standardized sample containers and a consistent protocol enables reliable trending information to be recorded. Although it is not possible to assign general limits or thresholds for abnormal conditions, it is recommended that interpretation of PQ values should be carried out in consultation with historical data, equipment logs, and/or service history in order to formulate guidelines on individual items of machinery. Guide D7720 is particularly useful in this context.1.1 This test method describes the use of offline particle quantification (often referred to as PQ) magnetometers to trend wear rates in machinery by monitoring the amount of ferromagnetic material suspended in a fluid sample that has been in contact with the moving parts of the machinery. It is particularly relevant to monitoring wear debris in lubricating oils and greases.1.2 The values stated in SI units are to be regarded as standard. Values of the burden (mass) of ferrous wear debris in the sample are reported as a PQ Index. The PQ Index is a numerical value that scales with the ferrous debris burden.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Dual-wall reverse-circulation drilling can be used in support of geoenvironmental exploration and for installation of subsurface water quality monitoring devices in unconsolidated and consolidated sediment or bedrock. Dual-wall reverse-circulation drilling methods allows for the collection of water quality samples at most depth(s), the setting of temporary casing during drilling, and continual sampling of cuttings while drilling fluid is circulating, if warranted or needed. Other advantages of the dual-wall reverse-circulation drilling method include, but are not limited to: (1) the capability of drilling without the introduction of any drilling fluid(s) (for example, drilling mud or similar) to the subsurface; (2) maintenance of borehole stability for sampling purposes and monitoring well installation/construction in poorly-indurated to unconsolidated sediment.4.1.1 The user of dual-wall reverse-circulation drilling for geoenvironmental exploration and monitoring-device installations should be cognizant of both the physical (temperature and airborne particles) and chemical (compressor lubricants and other fluid additives) qualities of compressed air that may be used as the circulating medium.4.2 The application of dual-wall reverse-circulation drilling to geoenvironmental exploration may involve soil or rock sampling, or in situ soil/sediment, rock, or pore-fluid testing.NOTE 2: The user may install a monitoring device within the same borehole wherein sampling, in situ or pore-fluid testing, or coring was performed.4.3 The subsurface water quality monitoring devices that are addressed in this guide consist generally of a screened- or porous-intake device and riser pipe(s) that are usually installed with a filter pack to enhance the longevity of the intake unit, and with isolation seals and low-permeability backfill to deter the vertical movement of fluids or infiltration of surface water between hydrologic units penetrated by the borehole (see Practice D5092). Since a piezometer is primarily a device used for measuring subsurface hydraulic heads, the conversion of a piezometer to a water quality monitoring device should be made only after consideration of the overall quality and integrity of the installation to include the quality of materials that will contact sampled water or gas. Both water quality monitoring devices and piezometers should have adequate casing seals, annular isolation seals, and backfills to deter cross-communication of contaminants between hydrogeologic units.NOTE 3: The quality of the results produced by this guide is dependent on the competence of the personnel performing it and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing. Users of this test method are cautioned that compliance with Practice D3740 does not in itself ensure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This guide covers how dual-wall reverse-circulation drilling may be used for geoenvironmental exploration and installation of subsurface water quality monitoring devices. The term reverse circulation with respect to dual-wall drilling in this guide indicates that the circulating fluid is forced down the annular space between the double-wall drill pipe and transports soil/sediment and rock particles to the surface through the inner pipe.NOTE 1: This guide does not include considerations for geotechnical site characterizations that are addressed in a separate guide.1.2 Dual-wall reverse-circulation for geoenvironmental exploration and monitoring-device installations will often involve safety planning, administration, and documentation. This guide does not purport to specifically address exploration and site safety.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 The application of direct air-rotary drilling to geoenvironmental exploration may involve sampling, coring, in situ or pore-fluid testing, installation of casing for subsequent drilling activities in unconsolidated or consolidated materials, and for installation of subsurface water-quality monitoring devices in unconsolidated and consolidated materials. Several advantages of using the direct air-rotary drilling method over other methods may include the ability to drill rather rapidly through consolidated materials and, in many instances, not require the introduction of drilling fluids to the borehole. Air-rotary drilling techniques are usually employed to advance drill hole when water-sensitive materials (that is, friable sandstones or collapsible soils) may preclude use of water-based rotary-drilling methods. Some disadvantages to air-rotary drilling may include poor borehole integrity in unconsolidated materials without using casing, and the potential for volitization of contaminants and air-borne dust.NOTE 3: Direct-air rotary drilling uses pressured air for circulation of drill cuttings. In some instances, water or foam additives, or both, may be injected into the air stream to improve cuttings-lifting capacity and cuttings return. The use of air under high pressures may cause fracturing of the formation materials or extreme erosion of the borehole if drilling pressures and techniques are not carefully maintained and monitored. If borehole damage becomes apparent, consideration to other drilling method(s) should be given.NOTE 4: The user may install a monitoring device within the same borehole in which sampling, in situ or pore-fluid testing, or coring was performed.4.2 The subsurface water-quality monitoring devices that are addressed in this guide consist generally of a screened or porous intake and riser pipe(s) that are usually installed with a filter pack to enhance the longevity of the intake unit, and with isolation seals and a low-permeability backfill to deter the movement of fluids or infiltration of surface water between hydrologic units penetrated by the borehole (see Practice D5092). Inasmuch as a piezometer is primarily a device used for measuring subsurface hydraulic heads, the conversion of a piezometer to a water-quality monitoring device should be made only after consideration of the overall quality of the installation to include the quality of materials that will contact sampled water or gas.NOTE 5: Both water-quality monitoring devices and piezometers should have adequate casing seals, annular isolation seals, and backfills to deter movement of contaminants between hydrologic units.1.1 This guide covers how direct (straight) air-rotary drilling procedures may be used for geoenvironmental exploration and installation of subsurface water-quality monitoring devices.NOTE 1: The term direct with respect to the air-rotary drilling method of this guide indicates that compressed air is injected through a drill-rod column to a rotating bit. The air cools the bit and transports cuttings to the surface in the annulus between the drill-rod column and the borehole wall.NOTE 2: This guide does not include considerations for geotechnical site characterizations that are addressed in a separate guide.1.2 Direct air-rotary drilling for geoenvironmental exploration will often involve safety planning, administration, and documentation. This guide does not purport to specifically address exploration and site safety.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 All observed and calculated values are to conform to the guidelines for significant digits and rounding established in Practice D6026. The procedures used to specify how data are collected/recorded or calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objective; and it is common practice to increase or reduce the significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis method or engineering design.1.6 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Direct-rotary drilling may be used in support of geoenvironmental exploration and for installation of subsurface water-quality monitoring devices in unconsolidated and consolidated materials. Direct-rotary drilling may be selected over other methods based on advantages over other methods. In drilling unconsolidated sediments and hard rock, other than cavernous limestones and basalts where circulation cannot be maintained, the direct-rotary method is a faster drilling method than the cable-tool method. The cutting samples from direct-rotary drilled holes are usually as representative as those obtained from cable-tool drilled holes however, direct-rotary drilled holes usually require more well-development effort. If drilling of water-sensitive materials (that is, friable sandstones or collapsible soils) is anticipated, it may preclude use of water-based rotary-drilling methods and other drilling methods should be considered.4.1.1 The application of direct-rotary drilling to geoenvironmental exploration may involve sampling, coring, in situ or pore-fluid testing, or installation of casing for subsequent drilling activities in unconsolidated or consolidated materials. Several advantages of using the direct-rotary drilling method are stability of the borehole wall in drilling unconsolidated formations due to the buildup of a filter cake on the wall. The method can also be used in drilling consolidated formations. Disadvantages to using the direct-rotary drilling method include the introduction of fluids to the subsurface, and creation of the filter cake on the wall of the borehole that may alter the natural hydraulic characteristics of the borehole.NOTE 3: The user may install a monitoring device within the same borehole wherein sampling, in situ or pore-fluid testing, or coring was performed.4.2 The subsurface water-quality monitoring devices that are addressed in this guide consist generally of a screened or porous intake and riser pipe(s) that are usually installed with a filter pack to enhance the longevity of the intake unit, and with isolation seals and low-permeability backfill to deter the movement of fluids or infiltration of surface water between hydrologic units penetrated by the borehole (see Practice D5092/D5092M). Since a piezometer is primarily a device used for measuring subsurface hydraulic heads, the conversion of a piezometer to a water-quality monitoring device should be made only after consideration of the overall quality of the installation, including the quality of materials that will contact sampled water or gas.NOTE 4: Both water-quality monitoring devices and piezometers should have adequate casing seals, annular isolation seals and backfills to deter movement of contaminants between hydrologic units.1.1 This guide covers how direct (straight) rotary-drilling procedures with water-based drilling fluids may be used for geoenvironmental exploration and installation of subsurface water-quality monitoring devices.NOTE 1: The term direct with respect to the rotary-drilling method of this guide indicates that a water-based drilling fluid is pumped through a drill-rod column to a rotating bit. The drilling fluid transports cuttings to the surface through the annulus between the drill-rod column and the borehole wall.NOTE 2: This guide does not include considerations for geotechnical site characterization that are addressed in a separate guide.1.2 Direct-rotary drilling for geoenvironmental exploration and monitoring-device installations will often involve safety planning, administration and documentation. This standard does not purport to specifically address exploration and site safety.1.3 Units—The values stated in either SI units or inch-pound units (given in brackets) are to be regarded separately as standard. The values stated in each system may not be exactly equivalents; therefore, each system shall be used independently of the other. Combining values from the two system may result in non-conformance with the standard.1.4 All observed and calculated values are to conform to the guidelines for significant digits and rounding established in Practice D6026.1.5 The procedures used to specify how data are collected/recorded or calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objective; and it is common practice to increase or reduce the significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis method or engineering design.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Hollow-stem auger drilling may be used in support of geoenvironmental exploration (Practice D3550, Test Method D4428/D4428M) and for installation of subsurface water quality monitoring devices in unconsolidated sediment. Hollow-stem auger drilling may be selected over other methods based on the advantages over other methods. These advantages include: the ability to drill without the addition of drilling fluid(s) to the subsurface, and hole stability for sampling purposes (see Test Method D1586 and Practices D1587, D2487, D2488, and D6151) and monitoring well construction in unconsolidated to poorly indurated materials. This drilling method is generally restricted to the drilling of shallow, unconsolidated sediment or softer rocks. The hollow-stem drilling method is a favorable method to be used for obtaining cores and samples and for the installation of monitoring devices in many, but not every geologic environment.NOTE 2: In many geologic environments the hollow-stem auger drilling method can be used for drilling, sampling, and monitoring device installations without the addition of fluids to the borehole. However, in cases where heaving water-bearing sands or silts are encountered, the addition of water or drilling mud to the hollow-auger column may become necessary to inhibit the piping of these fluid-like materials into the augers. These drilling conditions, if encountered, should be documented.4.1.1 The application of hollow-stem augers to geoenvironmental exploration may involve groundwater and soil sampling, in situ or pore-fluid testing, or utilization of the hollow-auger column as a casing for subsequent drilling activities in unconsolidated or consolidated materials (Test Method D2113).NOTE 3: The user may install a monitoring device within the same auger borehole wherein sampling or in situ or pore-fluid testing was performed.4.1.2 The hollow-stem auger column may be used as a temporary casing for installation of a subsurface water quality monitoring device. The monitoring device is usually installed as the hollow-auger column is removed from the borehole.4.2 The subsurface water quality monitoring devices that are addressed in this guide consist generally of a screened or porous intake device and riser pipe(s) that are usually installed with a filter pack to enhance the longevity of the intake unit, and with isolation seals and low-permeability backfill to deter the movement of fluids or infiltration of surface water between hydrologic units penetrated by the borehole (see Practice D5092). A piezometer is primarily a device used for measuring subsurface hydraulic heads, the conversion of a piezometer to a water quality monitoring device should be made only after consideration of the overall quality and integrity of the installation, to include the quality of materials that will contact sampled water or gas.NOTE 4: Both water quality monitoring devices and piezometers should have adequate casing seals, annular isolation seals, and backfills to deter the movement of fluids between hydrologic units.NOTE 5: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/evaluation/and the like. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This guide covers how hollow-stem auger-drilling systems may be used for geoenvironmental exploration and installation of subsurface water quality monitoring devices.1.2 Hollow-stem auger drilling for geoenvironmental exploration and monitoring device installations often involves safety planning, administration, and documentation. This guide does not purport to specifically address exploration and site safety.NOTE 1: This guide does not include considerations for geotechnical site characterizations that are addressed in a separate guide.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This method directly determines the concentrations of dissolved PAH concentrations in environmental sediment pore water samples. The method is important from an environmental regulatory perspective because it can achieve the analytical sensitivities to meet the goals of the USEPA narcosis model for protecting benthic organisms in PAH contaminated sediments. Regulatory methods using solvent extraction have not achieved the wide calibration ranges from nanograms to milligrams per litre and the required levels of detection in the nanogram-per-litre range. In addition, conventional solvent extraction methods require large aliquot volumes (litre or larger), use of large volumes of organic solvents, and filtration to generate the pore water. This approach entails the storage and processing of large volumes of sediment samples and loss of low molecular weight PAHs in the filtration and solvent evaporation steps.5.2 This method can be used to determine nanogram to milligram per litre PAH concentrations in pore water. Small volumes of pore water are required for SPME extraction, only 1.5 mL per determination and virtually no solvent extraction waste is generated.1.1 The U.S. Environmental Protection Agency (USEPA) narcosis model for benthic organisms in sediments contaminated with polycyclic aromatic hydrocarbons (PAHs) is based on the concentrations of dissolved PAHs in the interstitial water or “pore water” in sediment. This test method covers the separation of pore water from PAH-impacted sediment samples, the removal of colloids, and the subsequent measurement of dissolved concentrations of the required 10 parent PAHs and 14 groups of alkylated daughter PAHs in the pore water samples. The “24 PAHs” are determined using solid-phase microextraction (SPME) followed by Gas Chromatography/Mass Spectrometry (GC/MS) analysis in selected ion monitoring (SIM) mode. Isotopically labeled analogs of the target compounds are introduced prior to the extraction, and are used as quantification references.1.2 Lower molecular weight PAHs are more water soluble than higher molecular weight PAHs. Therefore, USEPA-regulated PAH concentrations in pore water samples vary widely due to differing saturation water solubilities that range from 0.2 µg/L for indeno[1,2,3-cd]pyrene to 31 000 µg/L for naphthalene. This method can accommodate the measurement of microgram per litre concentrations for low molecular weight PAHs and nanogram per litre concentrations for high molecular weight PAHs.1.3 The USEPA narcosis model predicts toxicity to benthic organisms if the sum of the toxic units (ΣTUc) calculated for all “34 PAHs” measured in a pore water sample is greater than or equal to 1. For this reason, the performance limit required for the individual PAH measurements was defined as the concentration of an individual PAH that would yield 1/34 of a toxic unit (TU). However, the focus of this method is the 10 parent PAHs and 14 groups of alkylated PAHs (Table 1) that contribute 95 % of the toxic units based on the analysis of 120 background and impacted sediment pore water samples.3 The primary reasons for eliminating the rest of the 5-6 ring parent PAHs are: (1) these PAHs contribute insignificantly to the pore water TU, and (2) these PAHs exhibit extremely low saturation solubilities that will make the detection of these compounds difficult in pore water. This method can achieve the required detection limits, which range from approximately 0.01 µg/L, for high molecular weight PAHs, to approximately 3 µg/L for low molecular weight PAHs.1.4 The test method may also be applied to the determination of additional PAH compounds (for example, 5- and 6-ring PAHs as described in Hawthorne et al.).4 However, it is the responsibility of the user of this standard to establish the validity of the test method for the determination of PAHs other than those referenced in 1.1 and Table 1.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, refer to Section 9.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 An adequately designed and installed surface protection system will mitigate the consequences of natural damage (e.g., freeze/thaw damage) in susceptible areas, or anthropogenic damages, which could otherwise occur and result in either changes to water level and/or groundwater quality data, or complete loss of the monitoring well.4.2 The extent of application of this practice may depend upon the importance of the monitoring data, cost of monitoring well replacement, expected or design life of the monitoring well, the presence or absence of potential risks, and setting or location of the well.4.3 Monitoring well surface protection should be a part of the well design process, and installation of the protective system should be completed at the time of monitoring well installation and development.4.4 Information determined at the time of installation of the protective system will form a baseline for future monitoring well inspection and maintenance. Additionally, elements of the protection system will satisfy some regulatory requirements such as for protection of near surface groundwater and well identification.1.1 This practice identifies design and construction considerations to be applied to monitoring wells for protection from events, which may impair the intended purpose of the well such as water level or water quality monitoring data.1.2 The installation and development of a well is a costly and detailed activity with the goal of providing representative samples and data throughout the design life of the well. Damage to the well at the surface frequently results in the loss of the well or can potentially impact measured water level and/or groundwater quality data. This standard provides for access control so that tampering with the installation should be evident.1.3 This practice may be applied to other surface or subsurface monitoring devices, such as piezometers, permeameters, temperature or moisture monitors, or seismic devices.1.4 Units—The values stated in SI units are to be regarded as the standard. The inch/pound units given in parentheses are for information only. Reporting of test results in units other than SI shall not be regarded as non-conformance with the standard.1.5 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026, unless superseded by this standard.1.6 This practice offers a set of instructions for performing one or more specific operations. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this practice may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

The purpose of this practice is to establish a method by which safety of flight issues are discovered, evaluated, and corrected for the purpose of maintaining operational safety of a LSA.1.1 This practice establishes the standard practice for the continued operational safety monitoring of a light sport aircraft.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 The principal use of this guide is in groundwater detection monitoring of hazardous and municipal solid waste disposal facilities. There is considerable variability in the way in which existing regulation and guidance are interpreted and practiced. Often, much of current practice leads to statistical decision rules that lead to excessive false positive or false negative rates, or both. The significance of this proposed guide is that it jointly minimizes false positive and false negative rates at nominal levels without sacrificing one error for another (while maintaining acceptable statistical power to detect actual impacts to groundwater quality (4)).5.2 Using this guide, an owner/operator or regulatory agency should be able to develop a statistical detection monitoring program that will not falsely detect contamination when it is absent and will not fail to detect contamination when it is present.1.1 This guide covers the context of groundwater monitoring at waste disposal facilities. Regulations have required statistical methods as the basis for investigating potential environmental impact due to waste disposal facility operation. Owner/operators must typically perform a statistical analysis on a quarterly or semiannual basis. A statistical test is performed on each of many constituents (for example, 10 to 50 or more) for each of many wells (5 to 100 or more). The result is potentially hundreds, and in some cases, a thousand or more statistical comparisons performed on each monitoring event. Even if the false positive rate for a single test is small (for example, 1 %), the possibility of failing at least one test on any monitoring event is virtually guaranteed. This assumes you have performed the statistics correctly in the first place.1.2 This guide is intended to assist regulators and industry in developing statistically powerful groundwater monitoring programs for waste disposal facilities. The purpose of this guide is to detect a potential groundwater impact from the facility at the earliest possible time while simultaneously minimizing the probability of falsely concluding that the facility has impacted groundwater when it has not.1.3 When applied inappropriately, existing regulation and guidance on statistical approaches to groundwater monitoring often suffer from a lack of statistical clarity and often implement methods that will either fail to detect contamination when it is present (a false negative result) or conclude that the facility has impacted groundwater when it has not (a false positive). Historical approaches to this problem have often sacrificed one type of error to maintain control over the other. For example, some regulatory approaches err on the side of conservatism, keeping false negative rates near zero while false positive rates approach 100 %.1.4 The purpose of this guide is to illustrate a statistical groundwater monitoring strategy that minimizes both false negative and false positive rates without sacrificing one for the other.1.5 This guide is applicable to statistical aspects of groundwater detection monitoring for hazardous and municipal solid waste disposal facilities.1.6 It is of critical importance to realize that on the basis of a statistical analysis alone, it can never be concluded that a waste disposal facility has impacted groundwater. A statistically significant exceedance over background levels indicates that the new measurement in a particular monitoring well for a particular constituent is inconsistent with chance expectations based on the available sample of background measurements.1.7 Similarly, statistical methods can never overcome limitations of a groundwater monitoring network that might arise due to poor site characterization, well installation and location, sampling, or analysis.1.8 It is noted that when justified, intra-well comparisons are generally preferable to their inter-well counterparts because they completely eliminate the spatial component of variability. Due to the absence of spatial variability, the uncertainty in measured concentrations is decreased, making intra-well comparisons more sensitive to real releases (that is, false negatives) and false positive results due to spatial variability are completely eliminated.1.9 Finally, it should be noted that the statistical methods described here are not the only valid methods for analysis of groundwater monitoring data. They are, however, currently the most useful from the perspective of balancing site-wide false positive and false negative rates at nominal levels. A more complete review of this topic and the associated literature is presented by Gibbons (1).21.10 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.11 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.12 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
216 条记录,每页 15 条,当前第 2 / 15 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页