微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 260元 / 折扣价: 221 加购物车

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method is designed to produce in-plane shear property data for material specifications, research and development, quality assurance, and structural design and analysis. Factors that influence the shear response and should therefore be reported include the following: material, methods of material preparation and lay-up, specimen stacking sequence and overall thickness, specimen preparation, specimen conditioning, environment of testing, specimen alignment and gripping, speed of testing, time at temperature, void content, and volume percent reinforcement. Properties that may be derived from this test method include the following:5.1.1 In-plane shear stress versus shear strain response,5.1.2 In-plane shear chord modulus of elasticity,5.1.3 Offset shear properties,5.1.4 Maximum in-plane shear stress for a ±45° laminate, and5.1.5 Maximum in-plane engineering shear strain for a ±45° laminate.1.1 This test method determines the in-plane shear response of polymer matrix composite materials reinforced by high-modulus fibers. The composite material form is limited to a continuous-fiber-reinforced composite ±45° laminate capable of being tension tested in the laminate x direction.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.2.1 Within the text, the inch-pound units are shown in brackets.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The miniature vane shear test may be used to obtain estimates of the undrained shear strength of fine-grained soils. The test provides a rapid determination of the shear strength on undisturbed, or remolded or reconstituted soils.NOTE 2: Notwithstanding the statements on precision and bias contained in this test method: The precision of this test method is dependent on the competence of the personnel performing it and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing. Users of this test method are cautioned that compliance with Practice D3740 does not in itself ensure reliable testing. Reliable testing depends on several factors; Practice D3740 provides a means for evaluating some of those factors.1.1 These test methods cover the miniature vane test in very soft to stiff saturated fine-grained clayey soils (φ = 0). Knowledge of the nature of the soil in which each vane test is to be made is necessary for assessment of the applicability and interpretation of the test results.NOTE 1: It is recommended that the miniature vane test be conducted in fine-grained, predominately clay soils with an undrained shear strength less than 1.0 tsf [100 kPa]. Vane failure conditions in higher strength clay and predominantly silty soils may deviate from the assumed cylindrical failure surface, thereby causing error in the measured strength.1.2 These test methods include the use of both conventional calibrated torque spring units (Method A) and electrical torque transducer units (Method B) with a motorized miniature vane shear device.1.3 Laboratory vane is an ideal tool to investigate strength anisotropy in the vertical and horizontal directions, if suitable samples (specimens) are available.1.4 All measured and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.5.1 The gravitational system of inch-pound units is used when dealing with inch-pound units. In this system, the pound (lbf) represents a unit of force (weight), while the unit for mass is slugs. The rationalized slug unit is not given, unless dynamic (F = ma) calculations are involved.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This test method is designed to produce shear property data for the process control and specification of adhesives. This test method may also be useful for research and development of adhesives.4.2 Lap shear properties vary with specimen configuration preparation, speed, and environment of testing. Consequently, where precise comparative results are desired, these factors must be carefully controlled and reported.1.1 This test method covers the determination of the tensile shear strengths of adhesives for bonding metals when tested in an essentially peel-free standard specimen that develops adhesive stress distribution representative of that developed in a typical low-peel production-type structural joint. The reproducibility of the strengths achieved are directly related to conformance with specified conditions of preparation and testing.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 The use of PBGM as barrier materials to restrict liquid migration from one location to another in soils has created a need for a standard test method to evaluate the quality of PBGM seams. In the case of PBGMs, it has become evident that seams can exhibit separation in the field under certain conditions. Although this is an index-type test method used for quality assurance and quality control purposes, it is also intended to provide the quality assurance engineer with sufficient seam shear data to evaluate seam quality. Recording and reporting data will allow the quality assurance engineer to take measures necessary to ensure the repair of seams with unacceptable strength during facility construction, and therefore, minimize the potential for seam separation in service.1.1 This test method presents the procedures used for determining the quality of prefabricated bituminous geomembrane (PBGM) bonded seams subjected to a shear test. It describes a destructive quality control test used to determine the integrity of PBGM seams.1.2 This test procedure is intended for PBGMs only.1.3 The type of thermal field seaming technique used to construct PBGM seams include the following.1.3.1 Torch-On—This technique melts two PBGM surfaces to be seamed by running a flame from a propane torch between them. Pressure is applied on the top or bottom, or both PBGMs, forcing together both surfaces to form a continuous bond.1.3.2 Hot Air—This technique introduces high-temperature air or gas between two PBGM surfaces to facilitate melting. Pressure is applied on the top or bottom, or both PBGMs, forcing together both surfaces to form a continuous bond.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The ring shear apparatus maintains the cross-sectional area of the shear surface constant during shear and shears the specimen continuously in one rotational direction for any magnitude of shear displacement and along the entire specimen cross-sectional area.5.2 The ring shear apparatus allows a reconstituted specimen to be consolidated at the desired normal stress prior to drained shearing. This simulates the field conditions under which complete softening develops in overconsolidated clays, claystones, mudstones, and shales that do not have a pre-existing shear surface, sheared bedding planes, joints, or faults as described by Skempton (19702 and 19773) and unfailed compacted fill slopes (Gamez and Stark 20144) because the fully softened strength corresponds to the peak shear strength of a normally consolidated fine-grained soil. The fully softened strength is only applicable to the soil zones that are subject to the environmental deterioration and applied shear stresses that lead to soil softening, deterioration of soil fabric, and strength loss, which may not be relevant to all slopes and all depths. The fully softened strength should be used in an effective stress/drained stability analysis using a stress dependent strength envelope for slopes with no prior shearing.5.3 The ring shear test is suited to the determination of the drained fully softened shear strength because of the short drainage path through the thin specimen, small post-peak strength loss in a normally consolidated specimen, and the constant cross-sectional area.5.4 The ring shear test specimen is annular so the angular displacement differs from the inner radius to the outer radius. This is not significant because a normally consolidated specimen does not exhibit a large post-peak strength loss so the difference in peak shear resistance at the inner radius and outer radius at different displacements is not significant and the ratio of the inner to outer radii of the ring is greater than 0.5 in accordance with Hvorslev (1936)6.NOTE 1: Notwithstanding the statements on precision and bias contained in this test method: The precision of this test method is dependent on the competence of the personnel performing it and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent testing. Users of this test method are cautioned that compliance with Practice D3740 does not ensure reliable testing. Reliable testing depends on several factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This test method provides a procedure for performing a torsional ring shear test under a drained condition to measure the fully softened shear strength and stress dependent strength envelope of fine-grained soils (using a reconstituted normally consolidated specimen). The fully softened strength and the corresponding stress dependent effective stress strength envelope are used to evaluate the stability of slopes that do not have a pre-existing shear surface but have been subjected to environmental conditions and shear stresses that lead to soil softening, deterioration of the soil fabric, and strength loss. It has been shown (Skempton 19702 and 19773) that under these conditions and within the depth zones that have undergone softening, first-time slope failures can occur at effective stress levels that correspond to a fully softened strength envelope. It has also been shown empirically (Skempton 19702 and 19773) that fully softened strength of fine grained soils can be approximated by the peak strength of a reconstituted and normally consolidated specimen. In this test method, reconstituted and normally consolidated specimens are sheared at a controlled and constant displacement rate until the peak shear resistance has been obtained. Generally, the drained fully softened failure envelope is determined at three or more effective normal stresses. A separate test specimen must be used for each normal stress to measure the fully softened strength otherwise a post-peak or even drained residual strength will be measured if the same specimen is used at the same or at another effective normal stress because of the existence of a prior shear surface.1.2 The ring shear apparatus allows a reconstituted specimen to be normally consolidated at the desired normal stress prior to drained shearing. The test results closely simulate the fully softened strength of stiff natural fine-grained soils (Skempton 19702 and 19773) and compacted fills of fine-grained soils (Gamez and Stark 20144). This simulates the mobilized shear strength in overconsolidated clays, claystones, mudstones, and shales in natural slopes and compacted fill in manmade slopes, such as, dams, levees, and highway embankments, after the soil has fully softened and attained the fully softened strength condition.1.3 A shear stress-displacement relationship may be obtained from this test method. However, a shear stress-strain relationship or any associated quantity, such as modulus, cannot be determined from this test method because defining the height of the shear zone is difficult and needed in the shear strain calculations. As a result, the height of this shear zone is unknown, so an accurate or representative shear strain can therefore not be determined.1.4 The selection of normal stresses and final determination of the shear strength envelope for design analyses and the criteria to interpret and evaluate the test results are the responsibility of the engineer or entity requesting the test.1.5 Units—The values stated in SI units are to be regarded as the standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This test method provides a basic procedure for evaluating the effective shear resistance of the net section of finished metal connector plates. 1.2 The determination of the tensile properties of metal connector plates is covered in Test Method E489. 1.3 Test Methods D1761 covers the performance of the teeth and nails in the wood members during the use of metal connector plates. 1.4 This test method serves as a basis for determining the comparative performance of different types and sizes of metal connector plates resisting shear forces. 1.5 This test method provides a procedure for quantifying shear strength properties of metal connector plates and is not intended to establish design values for connections fabricated with these plates. 1.6 This test method does not provide for the corrosion testing of metal connector plates exposed to long-term adverse environmental conditions where plate deterioration occurs as a result of exposure. Under such conditions, special provisions shall be introduced for the testing for corrosion resistance. 1.7 In the case of dispute, the inch-pound units, shown in parentheses, shall be governing. 1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
315 条记录,每页 15 条,当前第 11 / 21 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页